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PREFACE

This book is a text-book, and not a treatise, on me-

chanics of materials. Although calculus is freely used

it is written for beginners who have had some previous

training in theoretical mechanics.

Most, if not all, of the exercises should be solved

when they appear in the text, for much matter of impor-

tance is contained therein.

An attempt has been made to produce a book which

will encourage the student to think/ and not to mem-
orize, to do and not simply to accept something already

done for him, but which still furnishes sufficient material

in the way of explanation and example so that he will

not become discouraged.

In its preparation numerous works in English, French,

and German have been consulted. No attempt has

been made to include the theory of the stresses in curved

bars, plates, rotating disks, etc., for these the reader is

referred to advanced works; such as,

Grashof, F., Theorie der Elasticitat und Festigkeit;

Resal, J., Resistance des Materiaux;

Bach, C, Elasticitat und Festigkeit;

Die Maschinen-elemente;

Morley, A., Strength of Materials;

Love, A. E. H., Theory of Elasticity.



IV PREFACE

I take this opportunity to thank my wife, Alwynne

B. Martin, for assistance in the preparation of the

manuscript and for reading the proofs; also Prof. R. F.

Deimel for suggestions and for reading both manuscript

and proof.

L. A. M., Jr.

Castle Point, Hoboken, N. J.

July, 191

1



CONTENTS

MECHANICS OF MATERIALS

INTRODUCTION

CHAPTER I

Simple Stresses

section I

Normal Stress and Strain; Shear

PAGE

Normal Stress 3

Stress , 4
Strain 4
Relation between Stress and Strain 4
Hooke's Law, Modulus of Elasticity. 7

Exercises 1 to 5 7

Changes in Section and Volume 8

Physical Constants 9
Exercises 6 and 7 10

Factors of Safety 10

Exercises 8 to 11 11

Shear 12

Shearing Stress 13

Exercises izto 15 14

section n

Applications of Hooke's Law

Temperature Stresses 14

Exercises 16 to 18 15

Resilience 15

Exercises iff to 21 15

V



VI CONTENTS

PAGE

Lengthening of a Bar Due to Its Own Weight 16

Exercise 22 16

Rod of Constant Strength 17

Exercises 23 to 27 18

Tension Due to Impact 18

Exercise 28 20

CHAPTER II

Stresses in Beams

section III

Bending Moments and Shearing Forces

Definitions 21

Bending Moment and Resisting Moment 23

Exercise 2Q 24

Shearing Force and Resistance to Shear '.

25

Diagrams of Shearing Forces and of Bending Moments 26

Exercises 30 to 34 27

Relation between Shearing Force and Bending Moment 31

Relation between Rate of Loading and Shearing Force 33

Exercise 35 34
Application of the Above Relations 34

Exercises 36 and 37 36

Bending Moments by Means of
J
Q*dx 37

Exercises 38 to 40 38

Dangerous Section 39
Simple Beam Loaded over Part of the Span 40

Exercises 41 to 43 42

Principle of Superposition 43

Exercise 44 43
Bending Moments by Means of the Funicular Polygon 44

Exercises 45 and 46 45

section IV

Theory of Simple Bending

Bernoulli's Assumptions 46

Ey
Proof of * =— 47

R



CONTENTS Vll

PAGE

Straight-line Law 47

E i>

Proof of Af = -/ = '-/ 48
K y

Location of the Neutral Axis 49
Centers of Area and the Neutral Axes of Beam Sections 50

Exercises 47 and 48 52

Second Moments of Area (Moments of Inertia) 52

Exercise 4Q 53

Theorems Concerning Second Moments of Area 53

Exercise 50 53

Applications of Above Theorems 53

Exercises si to S3 SS

SECTION V

Investigation and Design of Beams for Bending

Example , 56

Exercises S4 to 59 57

Design of Wooden Beams 58

Exercises 60 to 62 58

Design of Steel Beams, Section Modulus 59

Exercises 63 to 6q 59

Beams of Uniform Strength 61

Exercises 70 and 71 62

Modulus of Rupture 63

Exercise 72 63

SECTION VI

Shearing Stresses in Beams

iiorizontal Shear 63

Qx-
Proof of q = — yA 64

bl

Exercise 73 67

Vertical Shear 67

Variation of the Shear over a Beam Section 68

Rectangular Sections 68

Exercises 74 and 7s 68

Dangerous Section for Shear 69

Exercises 76 to 78 69



V1U CONTENTS

PAGE

I-sections 69

Exercise yg 71

Circular Sections 71

Criteria for Equal Strength in Shear and Bending 73

Exercises 80 to 83 74

CHAPTER III

Deflection of Beams Due to Simple Bending

section vii

The Differential Equation of the Elastic Curve and Its Application

d2
y

Proof olEI—=Mx 75
dx1

Application to a Cantilever Loaded at the Free End 76

Exercises 84 to gi 7g

Application to a Simple Beam Eccentrically Loaded 80

Exercises 92 to g4 83

Application of the Principle of Superposition 83

Exercises gs to g8 84

Reactions of Propped Beams 85

Exercises gg to 102 86

SECTION VIII

The Differential Equations of Beams

Application to a Variable Distributed Load 87

Exercise 103 go

CHAPTER IV

Statically Indeterminate Beams

section IX

Propped and Built-in Beams

Cantilever Propped at the Free End gi

Exercise 104 g4
Built-in Beams g5

Exercise 10$ g7



CONTENTS IX

PACE

SECTION X

Continuous Beams

Continuous Beams g7
Exercise 106 g7

Clapeyron's Theorem of Three Moments 97
Exercises 107 to in 103

Advantages and Disadvantages of Continuous Beams 105

CHAPTER V

Struts and Columns

section XI

Eccentric Longitudinal Loads (.Short Columns)

Short Columns Loaded Eccentrically 107

Exercises 112 to 115 109

Applications to Masonry, etc no
Exercises 116 to ng no

SECTION XII

Buckling (Long Columns)

Introduction in
Exercises 120 and 121 m

Euler's Formula 112

Exercises 122 to 126 115

Slenderness Ratio of a Column 117

Exercise 127. 118

Rankine's Formula 118

Exercises 128 to 132 120

Other Column Formulas 121

CHAPTER VI

Torsion

section xin

Stress and Strain Due to Torsion

Definitions. 123

Resisting Torque - 124

Exercises 133 to 135 126



X CONTENTS

PAGE

Modulus of Elasticity of Shear 126

Angle of Twist 126

Exercises 136 to 138 127

SECTION XIV

Applications

Shaft Couplings 128

Exercises I3Q and 140 I2g

Power Transmitted by Shafts 129

Exercises 141 to 147 130

CHAPTER VII

Stress, Strain, and Elastic Failure

section xv

Stress

Stress 131

Notation 132

Theorem I, Equality of Shearing Stresses 134

Exercise 148 135

Two Dimensional Stresses 135

Exercise 14Q ... 136

Stresses Across Any Plane . . 136

Exercises ijo and 151 . 139

Principal Planes and Principal Stresses . . 140

Theorem II, Direction of the Principal Planes . 140

Planes of Maximum and Minimum Normal Stress 140

Theorem III 141

Exercises 152 and 153 142

Surfaces of Principal Stresses . 142

Exercises 154 and 155 . 144

Maximum Shear . 144

Theorem IV 145

Exercises 156 to i;g' 145

Pure Shear 145

Exercises 160 and 161 146

Theorem V, Existence of Pure Shear 147

Exercises 162 and 163 148



CONTENTS XI

PAGE

Application to Shafts in Torsion 148

Exercises 164 and 165 149

Linear Stress 149

Exercises 166 to 168 149

Internal Resistances to Sliding 150

Exercises i6q to 172 151

Ellipse of Stress 152

Exercises 173 to 176 153

SECTION XVI

Strain

Strains Due to Normal Stresses 155

Actual Strains Due to Principal Stresses 156

Exercise 177 157

Strains Due to Shearing Stresses 157

Exercise 178 157

Volumetric Strain 157

Relation between Stress and Strain 158

Three Modulii of Elasticity 158

Relations between the Elastic Constants 159

Exercises 17Q to 183 161

SECTION XVII

Elastic Failure

Three Theories as to Elastic Failure 162

Exercises 184 to 186 164

Elastic Failure in Beams 164

CHAPTER VIII

Compound Stresses

section XVIII

Combined Torsion and Bending

Combined Torsion and Bending 166

Exercise 187 167

Elastic Failure under Various Theories 168

The Cranked Shaft 168

Exercises 188 to igi 169



Xll CONTENTS

PAGE

SECTION XIX

Envelopes

Cylindrical Shell under Internal Pressure, Hoop Stress 170

Exercises 192 to 196 172

Longitudinal Stress 172

Exercises 197 to 199 1 73

Spherical Shell under Internal Pressure 1 74

Exercises 200 and 201 1 75

Cylindrical Shell under External Pressure 175

Exercises 202 and 203 176

Hollow Cylinders with Thick Walls, Lam6's Equations 176

Exercises 204 to 214 179

CHAPTER IX

The Principle or Work As Used in Computing Deflections

section xx

Deflection Due to Bending

Definitions 181

Resilience of a Bent Beam, Neglecting Shear 181

Exercise 215 183

Examples 1 183

Exercises 216 to 218 184

Deflection under a Single Concentrated Load 184

Exercises 219 and 220 185

Deflection at Any Point under Any Loading 186

Examples 190

Exercises 221 to 22J 192

section xxi

Deflections Due to Shear

Resilience Due to Shear 193

Exercises 228 and 229 193

Deflection Due to Shear. Special Case 194

Exercises 230 and 231 196

General Formula for the Deflection Due to Shear 196

Example 199

Exercises 232 to 234 201



CONTENTS Xlll

PAGE

Problems for Review 203

Exercises 233 to 276 203

Answers 211

Index 221





MECHANICS OF
MATERIALS

INTRODUCTION

In every structure various members or parts are

joined together and transmit forces.

When the members of a structure are so joined as to

permit of relative motion the structure is called a

machine, and the study of the forces transmitted

necessitates the application of the principles of statics,

kinematics, and kinetics.

When the members of a structure are so connected

that their relative positions must remain unaltered the

structure is called a structure, in a narrower sense, and

the forces transmitted from member to member can

generally be determined by means of the principles of

statics alone.

Under the general heading of theoretical mechanics

some of the forces acting upon the various members of

certain machines and structures have already been dis-

cussed, together with the principles necessary for their

determination. During these discussions the members

of the structures were, however, considered rigid; they

were assumed to remain unaltered in shape irrespective

of their dimensions and of the magnitude of the forces

to which they were subjected. The materials of which
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these members must be made cannot fulfill these con-

ditions.

For a member of a certain size and material it is pos-

sible to assign certain limiting forces beyond which it

is not advisable or even safe to expose this member.

Again, given the forces that any member must with-

stand, it becomes necessary to determine the shape and

dimensions of that member which will enable it to with-

stand said forces with safety, or with appropriate stiff-

ness, or with least weight of material. These, then,

are the problems investigated under the subject of

mechanics of materials. The behavior of material under

the action of force is our subject matter.

No advance can be made in this subject by purely

mathematical deductions founded upon the principles

of mechanics. It is absolutely necessary to introduce

the results of experiments upon actual materials of con-

struction; the physical properties of the materials used

must be considered. In this text we shall assume such

physical constants as may be necessary (always using

average values, for the physical constants vary between

rather wide limits even for the same material) and con-

fine ourselves to the mathematical side of the subject.



CHAPTER I

SIMPLE STRESSES

Section I

NORMAL STRESS AND STRAIN; SHEAR

Normal Stress. — Consider, as the simplest case, a

bar (weight neglected) of constant section acted on only

by the forces F, uniformly distributed over its ends

(Fig. i). This bar is evidently in equilibrium under

M N

Fig. i

the axial forces. We wish to consider more closely the

effect of this load upon the material of the bar. Imagine

the bar divided into three parts by planes perpendicular

to its axis at B and C. In making free bodies of these

three parts forces must be shown at the sections M, N,

P, and Q. These molecular forces may be considered as

due to cohesion. They are distributed forces, in this

case of constant intensity, so that their resultant per

square inch of section is constant. From the equilibrium

3



4 MECHANICS OF MATERIALS

of every portion of the bar it is evident that the resultant

of the distributed forces on each of the sections M, N,

P, and Q must be equal to F.

This bar is said to be stressed; as shown in Fig. i, the

bar is in tension ; if the forces F were both reversed the

bar would be in compression. In either case the total

stress would be measured by the force F.

Stress.— The unit stress, or simply the stress, is the

intensity of stress, i.e., the total stress divided by the

sectional area of the bar over which the stress is uni-

formly distributed, so that if A is the sectional area in

square inches and F the total stress in pounds, then the

unit stress or simply the

F
stress = p = — pounds per square inch.

Strain. — When a bar is stressed it invariably changes

in length. This deformation is called the total longi-

tudinal strain. Instead of considering the total defor-

mation, it is usual to specify the deformation per unit

of length, and this is called the unit strain. Thus if a

bar / inches long is put in tension and lengthens Al inches,

the unit longitudinal strain or simply the

longitudinal strain = s = — •

Relation between Stress and Strain. — The relation

between stress and strain can be established only by
experiment. The machines used for this purpose are

admirably described in Marten's Handbook of Testing

Materials.*

* English Translation by G. Henning. Wiley & Sons, N. Y. C.
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The diagramatic sketch, Fig. 2, will illustrate the gen-

eral principle involved. By means of hydraulic pressure

at A the test piece BC is put in tension, the force applied

being measured by means of the weight W. The length

of a portion / of the test piece, well away from its ends,

Fig. 2

is measured (by means of micrometer screws) under

various conditions of loading. Thus the total stress and

the corresponding total longitudinal strain are deter-

mined experimentally.

The results of experiments such as described above can

best be represented graphically. Consider, as an exam-

ple, wrought iron. The curve obtained by plotting unit
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stress and unit strain as ordinates and abscissas is repre-

sented in Fig. 3. Fig. 3 shows that the strain is pro-

portional to the stress up to the point marked E.L.

This point is known as the elastic limit. If the stretch-

ing force be diminished to zero at any time before the

elastic limit is reached, the test piece will return to its

40000

30000

a
a

§

a

20000

10000



SIMPLE STRESSES 7

and diminished, the curve of return will be practically

parallel to the line o, E.L.; and the bar will suffer a

permanent elongation, or set, of .003 of an inch per inch

of length. On reloading the bar the graph will follow

the dotted line to A very closely, and a new elastic

limit and yield point somewhat higher than A will be

established.

The ordinate of the point marked U.S. denotes the

ultimate strength of the specimen. At this point the

strain increases without additional load or even under

slightly diminished load until rupture occurs. The

ultimate strength is defined as the maximum load the

bar can stand divided by its original sectional area.

We are now prepared to state Hooke's Law,— that

within the elastic limit the stress is proportional to the

stress
strain: that is, — is constant for any given material.

strain

This constant is known as Young's modulus or the

modulus of elasticity. This modulus we shall denote

by E.

Thus in our notation

s

where p = stress in pounds per square inch and 5 =

strain in the direction of the stress p in inches per inch

of length; .'. E is measured in pounds per square inch.

Exercise i. What are the dimensions of stress, strain,

Young's modulus?

Exercise 2. A copper wire .04 inch in diameter and

10 feet long stretches .289 inch under a pull of 50 pounds.

Find its modulus of elasticity.
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Exercise 3. A wrought-iron rod 2 inches square and 10

feet long was lengthened .03 inch by suspending a load from

its lower end. Find the load. (E = 25,000,000.)

Exercise 4. A wrought-iron tie-rod f inch in diameter

lengthened f inch under a tension of 5000 pounds. How
long was it ?

Exercise 5. How much will a hundred-foot steel tape,

2 inch wide and 5V inch thick, stretch under a pull of 50

pounds? (E = 30 X io6 pounds per square inch.)

Changes in Section and Volume. — It has been shown

by experiment that longitudinal strain is always accom-

panied by a lateral strain, so that as the length increases

the diameter decreases, and vice versa. Also this lateral

strain is proportional to the corresponding longitudinal

strain, thus, within the elastic limit

unit lateral strain 1——
;
—-— — = — > a constant;

unit longitudinal strain m

— is called Poisson's ratio and is about .t, for metals.m
Thus a rectangular bar, length /, width b, and depth d,

will under tension lengthen to say /', while its lateral

dimensions diminish to V and d! respectively (Fig. 4).
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and if — represents Poisson's ratio,
m

d' = d-d(-)s = d(i --),
\ml \ ml

b' = b-b(-)s = b(i --)
\ml \ ml

Also the strained sectional area becomes

\2

d'b' = db(i --Y.
\ ml

and as s is very small, the term containing s2 may be

neglected, so that

d'b' = db(i- —)
\ m J

very nearly, and the decrease in area is
m

Exercise 6. Show that the elastic change in volume of

the above bar under compression is s (
i

Jldb.

Exercise 7. A bar of structural steel, 2.5 inches in

diameter and 18 feet 6 inches long, is put under a tension

of 64,000 pounds. Compute the change in length, sectional

, and volume. I — = -
; E = 30,000,000.

1

V» 3 /
area

Factors of Safety. — As already stated, the

it maximum or breaking load
ultimate strength = ——;

^
,

original sectional area

of the test piece.

The
,

.

ultimate strength
working stress = — —

—

s—

•

factor of safety
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This factor of safety is used to bring the working stress

well within the elastic limit and to allow for any unfore-

seen flaws or irregularities in the material used.

It is evident that for strength and durability the stress

in any member of a structure must remain below the

elastic limit of the material of which it is composed, as

otherwise a permanent set or even destruction would

result; and as in commercial tests the elastic limit is

seldom accurately ascertained, the ultimate strength,

with a suitable factor of safety, is used instead. In the

case of some materials, such as brick and stone, which are

at best of uncertain uniformity throughout, the factor

of safety is taken much larger than in the case of steel

or wrought iron. The selection of the proper factor of

safety is largely a matter of practical experience.

(Page 9.)

Exercise 8. A short wooden post is 6 inches in diameter.

What compressive load can it bear with a factor of safety

of 8?

Exercise 9. To what height can a hard brick wall of

constant thickness be safely carried if it supports its own

weight only? Assume the brick to weigh 125 pounds per

cubic foot.

Exercise 10. The maximum steam pressure in a steam-

engine cylinder is 120 pounds per square inch and the piston

area is 200 square inches. Find the diameter of the steel

piston-rod if lateral bending is prevented.

Exercise ii. Short, square wooden columns supporting

a platform each carry a load of 16,000 pounds and rest

upon foundations of brick. Find the dimensions of the

columns and the size of the square column footings if they

are needed.
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Shear. — The stresses just considered (tension and

compression) are called normal stresses. Here the

tendency is to separate the molecules from each other

(O

Fig s

in a direction at right angles to the plane upon which

the stress is considered.

It often happens that the forces acting tend to force

the molecules past each other in a direction parallel to

the resisting plane or section. An action of this kind

is called a shear. Thus in Fig. 5 (a) , if the test piece AB
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3

rests upon two fixed supports and the block C (which

just fits between these supports) is forced downward, the

piece AB will be sheared along the planes indicated by

the dotted lines. In this case the area subject to shear

is twice the sectional area of the bar and the total

shearing force is F.

As before, the unit shearing stress or simply the

, . total shearing force
shearing stress = q = — s—

area subject to shear

Other illustrations of material subject to shearing

stress are shown in Fig. 5; (b) shows a riveted joint

and (c) a rafter and tie rod in a roof frame; the dotted

lines indicate the planes of shear.

As a numerical illustration, consider the stresses in a

wooden test piece, (Fig. 6) . The larger cylindrical ends

U 6'i »J !< 6"--— -

H
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strength for shear along the grain may be as low as

500 pounds per square inch, we have the tension for

rupture under normal stress

{ \2

= '

X 10,000 = 17,700 pounds,
4

while the tension which will cause failure by shearing

= t (1.5 X 6) 500 = 14,100 pounds.

Thus the piece is likely to fail by shearing.

Exercise 12. To what length should the dimension above

represented by 6 inches be increased to assure failure by

normal stress?

Exercise 13. Calculate the force required to punch a hole

1 inch in diameter through a wrought-iron plate f inch thick.

Exercise 14. How much will a steel punch 2 inches

square and 4 inches long be shortened by the force required

to punch a 2-inch-square hole through a wrought-iron plate

\ inch thick ?

Exercise 15. The diameter of a wrought-iron bolt is

f inch. What should be the depth of the bolt-head in order

that the bolt be equally strong in tension and in shear?

Section II

APPLICATIONS OF HOOKE'S LAW

Temperature Stresses. — Materials usually expand

with an increase in temperature. The coefficient of

expansion is the increase in length per unit of length for

an increase of 1 degree Fahrenheit in temperature. Thus

given the coefficient of expansion, we can calculate the

change in length corresponding to a given change in

temperature.
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If a rod is prevented from changing its length, the

forces resisting this change will stress the rod, and this

stress can be calculated by means of Hooke's Law.

Exercise 16. A wrought-iron rod 20 feet long and 2 inches

in diameter is screwed up to a tension of 9000 pounds. If

the temperature falls 10° F., what is the tension in the bar?

(Coefficient of Expansion .0000068.)

Exercise 17. In electric railways the steel rails are often

welded together. Assuming that there are no expansion

joints and that no buckling occurs, what is the greatest range

of temperature for which the stress will remain within the

elastic limit? (Coefficient of Expansion .0000065.)

Exercise 18. A battery of boilers is connected by a steel

pipe in which no provision was made for expansion. If the

temperature of the room is 80° F. and that of the steam

380° F., what stress would result if no change in length

occurs ?

Resilience.— Resilience is the energy stored in stressed

material.

The work done in stretching a bar within the elastic

limit is evidently the product of the average force by

the total elongation, or (~)(Al). In general the work

W = / Fdx where F is the variable force applied to
Jo

the rod; F must be expressed in terms of x before

integrating for W.

Exercise 19. Show that the resilience per unit volume

r any substance is -A= if * lies within the elastic limit.
J

2 E
In what units is this quantity measured?
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Exercise 20. How much work is done in stressing a

wrought-iron bar 4 inches in diameter and 54 inches long

from 6000 pounds per square inch to 12,000 pounds per

square inch?

Exercise 21. Find the horse-power required to produce

a tension of 56,000 pounds in a steel rod 3 inches in diameter

and 68 inches long, if it is stretched 1,200 times per minute.

The lengthening of a cylindrical bar due to its own

weight furnishes an interesting application of calculus.

(Fig. 7-)

Let w = the weight of the bar per unit volume,

A = its sectional area,

d(Al) = the increase in length of an element,

dx = length of this element,

Al = total elongation of the bar,

I = length of bar.

///////////////, '{ffijr
Then at any point x

lower end the strain

inches from the

j =
d(Al)

1

dx

but

thus

Axw
E AE

d(Al) =

Fig. 7

Al

wxdx

E

eJ„=
wxdx = \ wl2

'2E

Exercise 22. Show that the elongation of a cylindrical

rod due to its own weight is that produced by a load equal
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to one-half the weight of the rod applied at the end of a

weightless rod, otherwise possessing the physical properties

of the original rod.

To find the shape of a rod of constant strength when
in tension under its own weight and a load at its end.

By constant strength is meant that every part of the

body is to be stressed to the same extent. In the case

of a cylindrical rod the material at the top bears the

greatest stress (tlue to the load plus the weight of the

rod) ; this gradually diminishes towards the lower end.

In Fig. 8 let the sectional area of the required rod,

at a distance x from the lower end, be A, a variable;

P, the load; w, the weight per unit y

volume; p, a constant, the stress at

'

any point in the rod; and A', the

area at any point between x = o

and x = x.

Then pA = (

'"

' wA'dx + P. Also

at a section x + dx from the lower

end p(A + dA)= r
Jo

wA'dx + wAdx

+ P.

By subtraction

Fig. 8

pdA = wAdx,

w
or logf A =-x + C.

P

If A a is the area at the lower end, then A = — , and

A = A when a; = o
P'

log«-
w

p
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A Jr - x
or A = — e p

•

p

This equation gives the area of the section of the rod at

any distance x from its lower end.

Exercise 23. Show by integration that the weight of the

wl

above rod is pA a

Exercise 24. Find the total elongation of the above

rod.

Exercise 25. Show that the resilience of a rod, of con-

stant strength, in tension is

Pf '

'"

2 wE(--)•

Exercise 26. A granite pier is to be 50 feet high and

carry a variable load of 100 tons; find the areas of the top

and bottom sections if the stress on all sections is to be

constant.

Exercise 27. In practice the pier in Ex. 26 would not

be shaped for constant stress but would be given a trape-

zoidal vertical section corresponding to the areas calculated

in Ex. 26. Under these conditions what would be the

stress at the bottom section?

Tension Due to Impact. — The stress due to a load

suddenly applied is greater than that due to the same

load gradually applied.

Assume the weight W (Fig. 9) to fall from a height h

upon a collar at the end of the rod. The stress due to

the impact can be calculated by the principle of work

as follows.
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Let A/, be the elongation due to the impact,

p, the greatest stress produced,

A, the area of the section of the rod, and

I, its length.

m

_t_

Fig. 9

Then the work done by the falling weight equals the

energy stored in the stressed bar, or

W{h + M)=\{pA)(^),

and as

W pHA
2E(*+©-

If the load is suddenly applied (not dropped) , then k = o

W
and p = 2
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Hence the greatest stress produced by a sudden appli-

cation of the load is double the stress due to the load

gradually applied.

Exercise 28. Find the greatest stress due to the weight

W, Fig. 9, when dropped from a height h upon the collar.

WWhy is this greater than 2 — ?
Jx



CHAPTER II

STRESSES IN BEAMS

Section III

BENDING MOMENTS AND SHEARING FORCES

Definitions. — If a straight bar under axial load is

in tension, or compression, it is called a tie or a strut,

respectively. When the lines of action of the forces act-

ing upon a straight (or very nearly straight) bar are

perpendicular to the axis of the bar, the bar is called a

beam. As the loads, and therefore the reactions, acting

upon beams are frequently vertical and the axis of the

beam is then horizontal, we shall usually assume these

conditions, although the methods are equally applicable

under any direction of loading. Further, the forces

acting upon the beam will all be assumed to lie in the

same plane.

Beams are usually classified according to the nature

of their supports. Thus a beam supported at one point

only, Fig. 10 (a)", or the portion of a beam overhanging its

supports (b), is known as a cantilever beam. When the

beam simply rests upon supports at its ends it is called

a simple beam, Fig. 10 (c). A beam not only supported,

but also firmly fixed at both its ends, Fig. 10 (d), is

called a built-in or fixed beam. A continuous beam is

one supported at more than two points along its length,

Fig. 10(e).
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The loading on a beam is either concentrated or dis-

tributed. When a large load is distributed over a rela-

tively short length of a beam its point of application

is assumed as bisecting this length, and the load is called

a concentrated load. A distributed load can be either

(a)

(6)

1

(C)

jfff^

^

.. m i— mm
{d) U w
(*)

Fig. io

uniformly distributed so that each element of the length

of the beam carries the same load, when it is known as a

uniform load, or it may vary in any manner.

A beam loaded as above described will be bent.

The plane of bending will be the vertical plane through

the axis of the beam. The elements on the concave side

of the beam will be in compression, those on the convex

side will be in tension, and thus, evidently, some elements

intermediate to these will be neither in tension nor

compression. All elements which remain unstressed

will form a surface such as AB (Fig. n), called the
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neutral surface ; its intersection with the plane of bend-

ing, the line AB, is called the neutral line, and as it

gives the curve into which the beam bends it is sometimes

called the elastic curve. Any section of the beam, such

Fig. 11

as QP, perpendicular to its neutral line, intersects the

neutral surface in a line NM\ this line is called the

neutral axis of the section.

Bending Moment and Resisting Moment. — To in-

vestigate the stresses which must act in the material
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.... and the reactions of the supports i?i and R2 ,
we

have the tensions and compressions (normal stresses)

on the elements of the material at the section (indicated

by the arrows marked p). Considering the left-hand

portion of the beam and noting that for equilibrium the

sum of the moments of all forces acting upon it taken

about any axis must be zero, we shall find it convenient

to use the neutral axis of the section as axis of moments.

Thus the sum of the moments of the external forces

(Ri, Wi, W2) about N must be numerically equal but

opposite in sign to the moments of the internal forces

(normal stresses, p) also taken about N. This is usu-

ally stated by saying that the

bending moment = resisting moment.

Exercise 29. Write carefully worded definitions of Bend-

ing Moment, External Forces, Internal Forces.

As regards the signs of the bending moments, we

shall follow the convention of regarding all clockwise

moments acting on the left-hand part of the beam as

positive.

The whole beam being in equilibrium, it follows that

the bending moment acting upon the left-hand part of

the beam must be numerically equal but opposite in sign

to the bending moment acting on the right-hand part;

so that if more convenient the bending moment may be

calculated from the right-hand part, but to preserve

the convention of signs the sign of the resulting moment
must be changed, for we shall always consider the bend-

ing moment due to the external forces acting upon the

left-hand portion of the beam in our discussions.
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Shearing Force and Resistance to Shear. — The
relation between the bending moment and the resisting

moment above deduced is not sufficient for the equi-

librium of the left-hand portion of the beam, Fig. 12.

We must not forget that the sum of the horizontal and

the vertical forces must be separately equal to zero as

well.

As it will seldom happen that Ri — Wi — Wi is zero,

it is evident th*at for equilibrium some other internal

forces besides those due to the normal stresses p must

act. The other internal forces on the section must be

vertical and therefore due to shearing stresses repre-

sented by q in Fig. 12. The introduction of this internal

force will not affect our equation of moments, and this

resistance to shear must be such as to make the sum
of the vertical forces equal to zero. Therefore the total

resistance to shear at the section considered must be

equal numerically but opposite in sign to the sum of

all the external forces acting upon the beam to the left

of the section considered; this sum is called the shearing

force at the section considered.

Thus: Shearing Force = Resistance to Shear.

All upward forces acting upon the left-hand portion of

the beam are to be considered positive.

Again, as the beam as a whole is in equilibrium, the

sum of the vertical external forces to the left of the

section must be equal numerically but opposite in sign

to the sum taken on the right. If more convenient the

sum of the forces on the right side of the section may
be taken for the shearing force, but the sign must then

be changed so as to conform with our convention of
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signs, for the left-hand portion will always be the one

considered.

To recapitulate, the bending moment at any section

is numerically the sum of the moments of the external

forces acting on either side of the section about the

neutral axis of the section as origin of moments (positive

when clockwise), and the shearing force is the sum of the

external forces acting on either side of the section

(positive when upward) ; but as we shall always consider

the left-hand portion of the beam the signs of all calcula-

tions made on the right-hand portion must be changed.

Diagrams of Shearing Forces and Bending Moments.
— The variations in the S.F. and B.M. as we pass from

one section to another in a beam are best exhibited

graphically.

As an example, consider a simple beam carrying a

single concentrated load, Fig. 13. The reactions are

evidently 2 W and W.
Assuming the origin at the left abutment, then the

S.F. and B.M. at any section at a distance x from the

left reaction are for

o < x < I I < x < 3 Z,

S.F. = 2 W, S.F. = 2W-sW = -W,
B.M. = 2 Wx, B.M. = 2 Wx - 3 W(x - I)

= W(3l-x).

These equations represent the curves of S.F. and B.M.
as plotted in Fig. 13.

Referring to Fig. 13, we see that the concentrated load

3 W causes a discontinuity in our curves of S.F. and
B.M. It will be seen that wherever a concentrated

force (load or reaction) acts upon a beam a discontinuity
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3W

27

S.F.

B.M.

Fig. 13

occurs in the S.F. and B.M. diagrams, for at such points

the equations formerly expressing the S.F. and B.M.

abruptly cease to apply.

Exercise 30. Write the equations and plot the diagrams

for S.F. and B.M. for the loadings shown in Fig. 14 (a) and

(b).

We shall hereafter use Qx to designate the shearing

force at the section x units from the left end of the beam

and Mx for the corresponding bending moment.

Consider now the case of a uniformly loaded canti-

lever beam. (Fig. 15 (a).)

Let w be the load per inch of length, / the length in

inches. Here only one interval need be considered,

namely, o < x < I; for no abrupt change in loading
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"
W

T

2W

5

4W 2W

"* -2-; hj.

1

(6)

Fig. 14

occurs. From Fig. 15 (a) we have for any section x

inches from the wall

S.F. = Qx = - [- w (I - x)] = w (I - x),

B.M. !<•/.- i'_ ---wi w(l-x) 2

I. = Af, = -[W-x)| j'-^j]
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It should be noticed that in this case it is impossible

to find the reaction at the wall, and therefore neither

Qz nor Mx can be found from the forces to the left of

the section. The above equations are obtained by con-

sidering the forces to the right of the section and care-

fully following the rules laid down on page 26.

-+

\r

(6)

(0)

Fig. 15

.Plotting these equations as in Fig. 15 (b) and (c), the

S.F. diagram is represented by a straight line and the

B.M. diagram by a parabola, vertex at x = I.

Exercise 31. Show that the B.M. diagram for the above

case is a parabola with its vertex at x = I and explain and

prove its construction as indicated in Fig. 15 (c).
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Exercise 32. Write equations for S.F. and B.M. and

construct geometrically the S.F. and B.M. diagrams for the

uniformly loaded beams shown in Figs. 16 and 17.

1- _V 4

Q.
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Exercise 34. In the uniformly loaded beam in Fig. 19

find the points at which the B.M. is zero.

W

Q 3

M,

Iii

Fig . 18

TT
w
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loading occurs a discontinuity in the equations of S.Fs.

and B.Ms, results.

In any interval between such discontinuities a definite

relation exists between the S.F. and the corresponding

B.M.'

To establish this relation, we may consider the equi-

librium of a portion of any beam between two sections

dx apart and x units from the origin, Fig. 20.

,
jQx+dQas

From the relations

shearing force = resistance to shear,

and bending moment = resisting moment,

it is evident that we may use Qx and Mx to indicate

the total effect of the internal stresses at the section x

units from the origin, and similarly Mx + dMx and

Qx + dQx represent the action of the internal stresses at

the section x + dx units from the origin as shown in

Fig. 20.

The load on the element is wdx, where w is the rate

of loading, and the line of action of the resultant load,
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wdx, is located by the distance ndx, where n is some

fraction which depends upon the law of change in w.

As the element is in equilibrium under the action of the

forces shown, we may equate the sum of the moments
of these forces about to zero. Thus, Qxdx + Mx

—
(Mx + dMx) — wdx {ndx) = o, and as the differentials

of higher order must be omitted we have

Qxdx — dMx = o,

whence Qx = —-* •

dx

Thus, in any interval between concentrated loads

(or reactions) or between any such loads and any abrupt

change in a distributed loading the shearing force is the

first derivative of the bending moment.

Relation between Rate of Loading and Shearing

Force. — Referring again to Fig. 20, we may place the

sum of the vertical forces acting upon the element

shown as a free body equal to zero.

Thus, Qx - wdx - (Qx + dQx) = o,

or — wdx — dQx = o,

,
dQ.

whence — w = -^- •

dx

The negative sign attached to w, when interpreted

by means of Fig. 20, where the loading acts downward,

shows that a positive rate of loading would act upward.

Thus if the sign of the rate of loading, w, is taken

positive when upward, then in an appropriate interval

this rate of loading is the first derivative of the shearing

force, or

dQ*

dx
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To recapitulate:

AQx , n dMxw = -f- and Qx = —-

—

j

ax dx

so that w = dQx d2Mx

dx dx2

Exercise 35. Sketch a diagram of loading for the beams

in Figs. 15, 16, 17, and 19 and note the geometrical relations

between the diagrams of loading, shear, and moments. They

are derivative curves.

1

A simple beam carrying a total load of P pounds uni-

formly increasing, as shown in Fig. 21, will serve to

illustrate the application of the above principles.

Fig. 21

Here the interval extends from x = o to x = I, as no

concentrated loads are applied between the points and

no sudden variation of the distributed load occurs.
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If w pounds per inch represent the rate of loading

1V0C
at x = I, then— is the rate of loading at x;

v

dQx wx
dx I

where the minus sign indicates downward loading,

thus, Qx = -^ + d.
• 2/

The reactions (as can be found by the principles of

statics, if we remember that the center of gravity of the

whole load is
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To find the maximum value of MX) its first derivative

should be equated to zero and solved for x. Thus put

Q* = o,

il x . wx2
,
wl

that is — —- + — = o,
2 / 6

whence x = ± - V3

;

3

of these values the only one applicable to the problem

in hand is x = + - V3. The maximum value of Mx is

3

now obtained by substituting this value of x inMx ;

thus,

,, w I
3 /-

. wll/~ wl2 /- 2 PI ,-Mma.% = - — - V 3 + — - V3 = — V3 = — V3,
6/9 63 2 7 2 7

for P=^-

Notice from Fig. 21 that whenever the B.M. reaches

a maximum then the S.F. becomes zero, as must evi-

dently be the case from the relation——5^ Qx . Also
ax

the slope of the B.M. diagram from x = o to x = - V*
3

is positive, and therefore the corresponding part of the

S.F. diagram is above the axis, etc.

PI
Exercise 36. Show that Mgreatest = — for a cantilever

3
beam I inches long and loaded with P pounds distributed so

as to gradually increase from zero at the free end towards
the fixed end.

Exercise 37. A simple beam / inches long is loaded with
a variable, distributed load which gradually increases from
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zero at one end to w pounds per inch at the center, and then

gradually decreases to zero at the other end. Find Qx, Mx ,

MmHX .

Bending Moment by Means of A^dx.— The B.M. ^M
at any point of a beam can readily be found by

dMx
means of the relation

dx
Qx ,

without recourse to

moments. For as I,= / Qxdx, if Qx is expressed in

terms of x and the proper constant of integration is

determined by means of the existing end conditions,

Mx may be found by integration.

To fix our ideas, consider the case of a uniformly loaded

simple beam, Fig. 22. Qx dx represents the area of a

Fig. 22

strip of the S.F. diagram dx in width and the / Qx dx

represents the area of a portion of this diagram bounded

Jr*x=
a

Qxdx represents the shaded

area of the diagram, and as S.F. is the derivative of the
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Qx dx not only represents the area of the S.F.

x=0

diagrams as shown in Fig. 22, but also equals the increase

of the ordinate of the B.M. diagram at x = a over its

value at x = 0. As the B.M. at x = o is zero (the end

Qx dx in this case is the ordi-

1=0

nate of the B.M. diagram at x = a.

Exercise 38. Find the maximum B.M. in Fig. 22, with-

out moments or the calculus.

When the integration covers several intervals, the

appropriate values of Qx and proper limits to cover the

whole beam, from the left end to the point at which

Fig. 23

the moment is sought, must be used. Thus in Fig. 23

the B.M. at A would be found as follows:

M. Qx dx = I (200) dx = 800 lbs.-ft.
J x =
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represented by the shaded area of the shear diagram.

At C we have

"x = 4 px = 8 px = 12

Mc= j (200) dx+
f

(100) dx+
J

(— ioo)dx
*i=0 »^a:=4 J x =8

= 800 + 400 — 400 = 800 lbs.-ft.

Jr>x
= 4 /»z =8 /•* = 12

(20o)<fo+ / (ioo)<fo+
j (

— 100)1
1=0 Jx=*i «^i=S

• 800 + 400 — 400 = 800 lbs.-ft.

To what area does this correspond?

Exercise 39. A uniformly loaded cantilever 8 feet long,

fixed at the left-hand end, carries concentrated loads of

300 pounds at the free end and 200 pounds 5 feet from this

end in addition to a distributed load of 100 pounds per foot.

Find the B.M. at the fixed end, and at 3 feet from this end.

Draw the S.F. diagram and compute geometrically.

Exercise 40. Show that for the loading of Fig. 24 the

B.M. at (3) is

M3 = Ria + (Ri -W 1)b+ (Ri - Wi - W2) c.

-—a—

-
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the dangerous section is - V$ inches to the right of the

3

left abutment, where the maximum bending moment is

27
6

As another important case in which the dangerous

section occurs at the point of maximum bending moment,

consider a simple beam loaded uniformly over a part of

the span only (Fig. 25).

Fig. 25

Let / = span in inches,

m = distance between the left abutment and the

center of the load in inches,

c = the length of the load in inches,

and w = load in pounds per inch run.
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Then the reactions are, at the left, —-*-- -> at the
l

. , , wcm
nght,— •

In this case three intervals must be considered, for

each abrupt change in the load causes a discontinuity

in the curves of S.F. and B.M. Such changes occur

c c
at m and m + - from the left end. Assuming the

2 • 2

origin at the left, the intervals extend from otom— >

2

from m to m + - > and from m + -to I. In Fig. 25,2.2 2

(a) shows the beam, (b) the diagram of loading.

The equations for Qx and Mx for the three intervals

are then as follows:

c c . c
]

o < x < m > m <x<m + ->22 2

.- wc(l — m) „ wc(l — m) I ,
c\

m + - <x <l,
2

_ wcm
Qx r .

,, wcm,, .

w(x—m+-)
2

and the corresponding diagrams are shown in Fig. 25 (c)

and (d).

Evidently the dangerous section occurs in the middle
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interval and its location can best be found by equating

the shearing forces for this interval to zero, whence

cl — 2 cm + 2 ml
x =

2/

and the maximum bending moment MmM can then be

found by substituting this value of a; in Mx for the

proper interval or by calculating the shaded area of

the S.F. diagram (Fig. 25 (c)).

Exercise 41. Find, without the use of the above formulas

but by means of geometrical calculations from the shearing

force diagram only, the dangerous section and maximum
bending moment for a simple beam loaded uniformly over

the left-hand half of its length.

Exercise 42. A simple beam, span 30 feet, is loaded with

100 pounds per foot for a distance of 10 feet starting at 15 feet

from the left abutment. Find the maximum bending

moment and the dangerous section by means of the S.F.

diagram.

As already stated, the dangerous section does not

always occur at a mathematical maximum of the bend-

ing moment. Sometimes a greater value of the bending

moment is found at the point of application of a con-

centrated force.

Exercise 43. A beam 24 feet long overhangs its 'right

abutment by 8 feet, the left abutment being at the one end
of the beam. If it is uniformly loaded with 2000 pounds per

foot, and carries 16,000 pounds at its right end, calculate the

maximum bending moment, the numerically greatest B.M.,
and find its dangerous section. Draw the S.F. and B.M.
diagrams.
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Principle of Superposition. — When several loads

(concentrated or distributed) act upon a beam the

total S.F. or B.M. at any section can be found by add-

ing the S.Fs. and the B.Ms, at that sectiondue to each

load considered separately. This is known as the prin-

ciple of superposition. It will be found especially con-

venient when concentrated and distributed loads occur

simultaneously.

Thus in Fig. 36 the dotted line represents the effect

due to the uniformly distributed load, the dotted dashed

w

line the effect of the concentrated load, and the full line

their combined effect or the total S.F. and B.M.

Exercise 44. Sketch diagrams of S.F. and B.M., show-

^-' ing the effect of the loadings shown in Figs. 18 and 19 acting

simultaneously.
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Bending Moments by Means of the Funicular Poly-

gon. — The bending moments due to concentrated loads

can be found graphically by means of the funicular

polygon constructed for these loads. In Fig. 27 are

shown the loading, the vector polygon, and the corre-

sponding funicular polygon. The vertical distance m
between the closing line of the funicular polygon, oc,

and oa is proportional to the bending moment at x.

a b

Fig. 27

To show this let the horizontal distance from O to the

vector polygon be h, then as the shaded triangles are

similar we have,

m {ca) / \ 1— =
^t^- or (ca)x = hm;

x h

but (ca) represents the reaction at the left, so that (ca)x

represents the B.M. at x. Assume the scale of forces as

p pounds to the inch, and the scale of distances q inches

to the inch then (ca)p is the reaction in pounds and xq

its arm, so that the B.M. at x is (ca)p X xq and equals

hmpq, for (ca)x = hm. If now m is measured in inches

and each inch represents hpq inch-pounds where h is

measured in inches, the result would be the B.M. at x.
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The scales are p pounds per inch for forces, q inches

per inch for distances, and hpq inch-pounds per inch for

B.M.

Exercise 45. Show that the above construction holds

for the third interval of a simple beam carrying four con-

centrated loads.

Exercise 46. If the scale of forces is 100,000 pounds per

inch and the scale of distance 12 inches per inch, what would

be an appropriate value for h, the polar distance, and what is

the corresponding scale of B.Ms.? (A simple scale of mo-

ments is to be desired.)

For distributed loads the 'above construction can be

used, provided the load be divided into short lengths

and the corresponding weights be considered concen-

trated at the centers of gravity of these elementary

loads. The resulting funicular polygon will then be

straight-sided, while the true curve of the bending mo-

ment is the inscribed curve to this polygon.

Section IV

THEORY OF SIMPLE BENDING

Simple bending occurs when a beam is bent by couples

applied to its ends so that no shearing action takes place.

In Fig. 18 the middle interval of the beam is a case in

point; here there exist no shearing forces, and the bend-

ing moment is constant, being due to the couple formed

by the load W and the left reaction, which is numeri-

cally equal to W. In Fig. 28 the beam originally straight

and of the same cross section throughout (which is

also assumed symmetrical with respect to the central
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longitudinal plane of bending) is acted on by couples

whose moments are represented by the curved arrows M

.

Under these conditions Bernoulli's assumption, that

transverse sections originally plane will remain plane

and normal to longitudinal fibers after bending, seems

reasonable. In beams it is convenient to consider the

material as consisting of longitudinal fibers or elements

Fig. 28

of infinitesimal section, even though the substance may
in no wise be of a fibrous nature. Moreover, it is assumed

that these imaginary fibers act independently of each

other, so that layers parallel to the neutral surface may
expand and contract without hindrance, and Hooke's

Law may be assumed to hold.

Consider an element of the beam originally inclosed

between two transverse planes m inches apart. After

bending this is assumed to become the element ABCD
whose length on the neutral surface is still m, and AD
and BC still remain planes intersecting at the center of

curvature, 0, the beam having a radius of curvature R
to the neutral surface. Let the element subtend an
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angle 0; then any fiber at a distance y from the neutral

surface will have a length (R + y)6. The original

length of this fiber was m = Rd, its elongation is thus yd

yand its strain s = %-
Rd R

If the stress due to bending

is p pounds per square inch and Hooke's Law is assumed

to apply,

then £ = £ =
s

£_pR
or *i

where E is Young's Modulus. If E is the same for

tension and compression, for the material considered,

Fig. 29

then the compressive stress at y inches to the other side

of the neutral axis will be equal to the stress p above

used. Also p increases as y increases and reaches its

greatest value at the outermost fibers of the beam. The

stress, p, is said to follow the straight-line law, being

proportional to its distance from the neutral surface.

To study the relation existing between the stresses

and the B.M., a portion of the beam must be considered

as a free body. In Fig. 29 this is done and N indicates
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the position of the neutral axis of the section considered.

The section of a fiber is shown and the internal force

(due to the stress p) acting upon it is p dy dz.

As this portion of the beam is in equilibrium, two

equations will furnish the necessary conditions.

^Moments about the neutral axis

=M- JJy(pdydz)=o, . . . . (i)

the function to be integrated over the section of the

beam,

and X Horizontal Forces = fpdydz = o. . (2)

For the moment M is due to vertical forces only, and

as these form a couple they in turn will balance so far

as the sum of the vertical forces is concerned.

From equation (1) it follows that

R
M= I jy(pdydz), and as p = E ^

M = Jjy[E I)
dy dz = |Jfy*

dy dz.

The quantity / I y
2 dy dz is a second moment of area,

but by reason of its resemblance to the similar expression

already studied in mechanics involving the density of

the material, etc., it is often, though incorrectly, called

a moment of inertia, and the letter / is used to designate

it.

Thus M = ^ -
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where M is the B.M. at the section considered,

E is Young's Modulus,

I is the second moment of area about the neutral

axis of the section considered,

and R is the radius of curvature to which the neutral

surface of the beam is bent by the moment M.

As R-t*, f-*
y R y

and M=fl = E
I,

R y

where p- is the stress due to ¥ at a distance y from the

neutral axis and -I is the resisting moment of the sec-

y

tion considered.

As yet the position of the neutral axis so often men-

tioned has not been located.

Equation (2) above will furnish the requisite condi-

tion.

yE
RAs I I pdydz = o and p =

I
J
y dy dz = o, or I / y dy dz = o.

we have
E
R

This directs attention to the well-known formula io*

the center of area of laminas,

/ I ydydz
y =<2-d ,

/ I dydz

where y is the distance from the axis of z to the center

of area.
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Now by the above relations y must be zero, and thus

the center of area of the section lies upon the neutral

axis, which is our axis of z, Fig. 29.

Digression as to Centers of Area and the Location of

the Neutral Axis.— The above discussion shows that the

neutral axis of a beam section must always pass through

the center of area of this section, for only under this

condition can the resultant force due to the compressive

stresses (above the neutral axis) and the resultant force

due to the tensile stresses (below the neutral axis) be

in horizontal equilibrium of translation.

Thus if we locate the center of area of a beam section

the position of the neutral axis is determined.

The well-known equation for locating the center of

area of a plane surface is

5)y(AA)

y
=

,

£(aa)

where y is the distance of the center of area from any

assumed axis of reference and y is the distance from the

center of area of any elementary area, AA , from the same

axis of reference, and the summation must include all

elementary areas composing the area whose center is

sought.

In certain (rare) cases the following formula,

Sfydy

ff*y

dz

dz

corresponding to the above but in the notation of the

calculus, may be useful.
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It will be found that most engineers call the center of

area of a beam section its center of gravity. This is a

misleading use of the term " center of gravity." If the

beam section is regarded as a thin lamina of uniform

density, then the center of

gravity of this lamina will -A., j£_ B
T

(a)

r

Axis

—
-H

of course coincide with the

center of area as above

defined. * Neutral.

T

As an example illustra-

ting the locating of the

neutral axis of a beam sec- s j

tion, consider the section

shown in Fig. 30 (a). This

is the section of a built-

up beam composed of two

angles and a plate.

The dimensions, the area,

and the location of the cen-

ter of area of the angles^)
^

used can be found in the

handbooks of the steel com-

panies; these are given in

Fig. 30 (b). J.-HJ. 30

After assuming any hori-

zontal axis as axis of reference, say AB, from which to

measure the y's, the table on the following page may
be filled out.

If the loading is normal to AB, the neutral axis of

this section is a line parallel to AB and passes through

the center of area of the whole section.

In this example the centers of area of both angles

c. ol A.

Area= 5.82 sq. in.
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are one inch from AB, so that their areas may be

added and the two angles considered as one " AA."
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The figure must be divided into parts which conform

to the conditions of the known " moments of inertia
"

as given in Fig. 31. Such parts would be

ABCD ('-*>

*?

1

1

JH M,

<-<-*
slope 1:6

I

_jt_

O N

_*
di^_ ;__

jc

Fig. 32

minus four times GHKF.
obtained from AFGE,

The / of GHKF can be

\ 12 06/
AHKEAI

=

/\
3

(3

96'C2 go/ \ 12

so that the moment of inertia of the whole section

about the neutral axis parallel to the flange equals

96 96) 12 (

d3b
4

12
2 (A4 - /

4
)

J
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Exercise 51. Show that I for the section shown in Fig. 32

about a neutral axis parallel to the web (vertical axis) is

A W (d - h) + fl» + & (6* - *)].

As another illustration, consider the section shown in

Fig. 30 (a). From the handbooks the I's of the angle

shown in Fig. 30 (b) are

/ about the neutral axis parallel to long leg = 5.55 ins.
4

/ about the neuiral axis parallel to short leg= 13.92 ins.
4

The I of the built-up section is to be found about its

horizontal neutral axis 3.96 inches below AB.
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Section V

INVESTIGATION AND DESIGN OF BEAMS
FOR BENDING

The formula for the investigation and design of beams

for bending is M = - 1. Here p signifies the stress

y
(pounds per square inch) on a fiber at a distance of y

inches from the neutral axis. For the present purpose

it is necessary to find or use the stress in that fiber

exposed to the greatest stress. Let p t and y t be the

stress on and the distance from the neutral axis to the

fiber at the greatest distance on the tension (convex)

side of the beam; then as the stress follows the straight-

line law p t
will be the greatest tensile stress in the beam,

and the formula

M=^(

I,

connects it with the bending moment at the section

considered.

Similarly M = ^1,

where the subscript c refers to the compression (concave)

side of the beam.

Of course if y t and y c are unequal, then the fiber stress

at the fiber most remote from the neutral axis must be

considered, and if the working stresses of the material

for tension and compression are unequal, the least must

be selected, other things being equal.

As an illustration, find the steady, uniformlydistributed

load that a wooden cantilever beam 5 feet long, 2 inches

broad, and 3 inches deep can carry.
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From the table of physical constants, the ultimate

strength of wood is 10,000 and 7,000 for tension and

compression respectively, and the factor of safety is 8.

As the section is rectangular y t
= yc = 1.5 inches, so

that the stresson the compressive side must be considered,

this being the fiber most likely to fail. Also the section

of the beam carrying the greatest B.M. will contain that

portion of the extreme compression fiber subject to the

greatest stress. In a uniformly loaded cantilever beam

this section is evidently at the wall and the B.M. at

this section is

12

so that

gives

M = — =
2
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including the weight of the beam in the load to be carried

by it.

Exercise 55. What total uniformly distributed load will

a wooden floor beam 2 by 8 inches and 16 feet long carry?

Exercise 56. A steel engine shaft rests on bearings 5 feet

apart and carries a 4-ton flywheel midway between the

bearings. Find the diameter of a shaft of constant section,

factor of safety 10.

Exercise 57. A hollow, circular, cast-iron beam, outside

diameter 6 inches, inside 5 inches, rests on supports 10 feet

apart. What load midway between the supports can it carry

with a factor of safety of 10? (Neglect the weight of the

beam.)

Exercise 58. Same as Ex. 57, considering the beam of

solid section and 6 inches diameter.

Exercise 59. Compare the weights of the beams and the

loads supported in Exs. 57 and 58.

When a rectangular beam is to be designed, and

neither width, b, nor depth, h, are known, a relation

between h and b can be found by means of M = c I,

y
and then assuming either b or h the other dimension

can be determined. For practical considerations h

should not exceed (about) 6 b.

Exercise 60. Wooden floor joists of 14-foot span and

spaced 12 inches from center to center are expected to carry

a floor load of 80 pounds per square foot. What is a suitable

size if the stress is not to exceed 900 pounds per square inch ?

Exercise 61. One of the joists in Ex. 60 comes at the

side of an opening 4 feet by 6 feet. The load on the shorter

joists (10 feet long) is partly carried by a joist 6 feet long,

one end of which rests on the joist to be considered at 4 feet

from its end. How thick should this joist be ?
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Exercise 62. A balcony is to project 6 feet from a wall

and be supported by wooden beams spaced 3 feet apart.

If the load is to be 200 pounds per square foot and the

greatest fiber stress allowed is 800 pounds per square inch, find

the size of the beams.

When the material of the beam is steel, then the

working stress for both tension and compression is the

same, and only the stress on the fiber most remote from

the neutral axis*need be considered. Under this con-

bl
dition y in M = — represents the distance from the

y
neutral axis to the fiber at the greatest distance from

the neutral axis of the section; if this is called c, then

the quantity

- is called the section modulus,
c

it depending only on the size and shape of the section,

and not on the physical properties of the material.

The section modulii of standard rolled sections are

listed in the handbooks.

Exercise 63. What should be the section modulus of a

simple steel I-beam designed to support a uniform load of

500 pounds per foot run, and two equal loads of 2 tons,

4 feet from each end of the span of 20 feet? The stress in

steel beams should not exceed 16,000 pounds per square

inch.

Exercise 64. What is the section modulus of the sec-

tion shown in Fig. 33? What concentrated load at mid-

span could this built-up beam carry on a span of 30 feet?

Exercise 65. A Cambria I-beam No. B 21 is 7 inches

deep, weighs 20 pounds per foot, has a moment of inertia of

42.2 inches4, and a working stress of 16,000 pounds per
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square inch. What total uniformly distributed load can it

carry, span 20 feet?

Many different sections evidently have the same sec-

tion modulus, and it remains for the designer to select

that section best suited to the case at hand. It should

be noted that the greater the distance of a fiber from the

neutral axis the greater is the stress in it due to bending.

Thus to use the material to the best advantage the area

of the section near the neutral axis should be small and

should enlarge where the stress is greatest. The com-

mon steel I-beam is an illustration. Also plate girders

built up of standard sections take in general the form of

an I. Nevertheless (as will be seen later), enough area

at the neutral axis must be preserved to sustain the

shearing stresses there acting.

Exercise 66. Find the depth and breadth of the rec-

tangular beam of greatest strength that can be cut from a

circular log d inches in diameter.

Exercise 67. Show that an error of about 1 % is made
in the greatest fiber stress when the weight of the beam is

2 % of a concentrated load at the center of the span and

said weight is neglected.

Exercise 68. Three sections of a water-pipe, each 12

feet long, are leaded end to end. In lowering them into

a trench where should the two slings be placed so that joints

will not be strained? Neglect the extra weight of the

sockets.

Exercise 69. Prove that the B.M. in pound-inches at

any section of a uniformly loaded simple beam is one-half

the load per inch multiplied by the product of the lengths

of the two segments into which the section divides the beam,

both in inches.
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Beams of Uniform Strength. — It is evident that

beams designed in the manner just described are too

strong for all but one section,— the dangerous section.

Therefore, not only is the material at the dangerous

section not stressed to its working stress except at the

extreme fiber, but also the stresses in the extreme fibers

of other sections fall below the working stress.

A beam so designed that the stresses in the extreme

fibers of all sections are the same and equal to the work-

ing strength is called a beam of uniform strength.

As the extreme fiber stress depends upon the bending

moment, M,at the section aswell as upon the correspond-

ing section modulus, - > the design must depend upon the
c

manner of support and the loading.

Consider the case of a cantilever supporting a concen-

trated load at its end (Fig. 34 (a)). Here Mx = Wx,

and as — = — , if a rectangular section is assumed,
c

M = *— gives for p c ,
the extreme fiber stress at the

y

section x inches from the end,

6Wx

as pc is to be constant and as x varies from section to

section either b or h must vary.

Assuming the beam of constant width b and putting

the variable depth h = y, we obtain

pcby
2 = 6 Wx,

6Wx
or f =

pcb
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the equation of a parabola, vertex at free end of beam.

The depth of the beam at the wall,

by placing x equal to I, so that

h, can be obtained

-si
6WI

-1-

w 7//

Fig. 34 (b) shows an elevation, and (c) a plan of this

beam. Of course the upper surface of the beam need

not be plane, provided

the y's all equal the value

indicated above. It

should also be noted that

(5) the depth of the beam
cannot be made zero at

x = o. Sufficient area

must be left at this sec-

tion to resist the shear,

which is neglected in the

above calculation.

If the depth of the

beam, h, is assumed con-

stant, then the width, y,

will vary, and pcyh
2 =

6Wx

» X— -*
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Exercise 71. Design a uniformly loaded simple beam of

uniform strength and constant width, and calculate the

depth at mid-span.

The above design can be used advantageously only

when the beams are of cast iron, as in machine frames,

brackets, etc. ; and due attention must be paid to leave

sufficient area at the ends to allow for the shearing

stresses (to be considered later). Plate girders made

by riveting together standard shapes and plates form

approximately beams of uniform strength, but here the

sections are no longer rectangular.

Modulus of Rupture. — When the stresses due to

i>I
bending exceed the elastic limit the formula M = e—

can no longer be applied, as is evident from the assump-

tions made in its deduction. Nevertheless, in making

transverse tests of wood and cast iron the formula is

employed on test pieces of rectangular section and p
calculated for the extreme fiber, using the bending mo-

ment at rupture for M. The value of p so calculated is

called the modulus of rupture. It is not a physical con-

stant of the material, and can be used for comparison

only on bars of the same length and section.

- Exercise 72. A simple beam 6 feet long, 2 inches broad,

3 inches deep, is broken by a weight of 1200 pounds at the

center. Find its modulus of rupture.

Section VI

SHEARING STRESSES IN BEAMS

Horizontal Shear. — So far the stresses due to pure

bending only have been considered. These stresses were

found to be normal stresses (tension and compression)
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varying according to the straight-line law, and pro-

portional to the distance of the fiber from the neutral

axis. Now the effect due to the shearing forces is to be

investigated.

As Qx = —t-* (see page 33), a change in the bending
ax

moment necessarily involves a shearing force.

(a)
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surface. The beam is assumed to be of rectangular sec-

tion and b inches wide. Fig. 35 (b) shows the element

AMND of Fig. 35 (a) as a free body. The forces act-

ing upon it are evidently due to (1) the normal stress on

the face ME; (2) the vertical shearing stress on ME; (3)

and (4) similar forces on the face NF; (5) the load wdx.

No stresses can act upon the faces AN, AF, and EJ, as

these are parts of free surfaces of the beam. On the

face MJ no vertical (i.e. normal) stresses act, for the

assumption, made on page 46, that the fibers act inde-

pendently of each other so as not to hinder their hori-

zontal and vertical expansions or contractions, precludes

this. This does not, however, mean that horizontal

(i.e., longitudinal) shearing stresses cannot occur. It

will soon be apparent that these are necessary for the

equilibrium of the element.

As the sum of the horizontal forces must equal zero,

we have

J J pdydz- J J p'dy dz + q"bdx = o . (1)

where q" is the horizontal shearing stress on MJ; this

is necessary, as / / p'dydz is greater than / / pdydz.

\£ -if

This becomes evident if we substitute p = —y- and

p' = -—-— ^ in equation (1) and obtain

q"bdx=ff^^ydydz-fffydydz

= IJ
dJ

ry dy dz
>



66 MECHANICS OF MATERIALS

and as Mx and / are constant for the section AB, and

the integration involves only the variables y and z, we

have

q"b dx = -j*J J ydy dz,

so that

where Qx is the shearing force at the section AB,
I is the second moment of area of this section,

b is the width of the section,

and / / ydy dz is the first moment of area about the

neutral axis of that part of the section lying above the

plane, MN, at which horizontal shearing stress q" acts.

As the integration of / / y dy dz extends only over

the area ME, Fig. 35 (b), and as

I
J
ydydz

" =

If* dz

where y is the distance of the center of area of the area

ME from the neutral axis, I I y dy dz can be put

equal to y (area of ME).
So that

where S AA is the area of ME and y is the ordinate of

its center of area measured from the neutral axis (see

page 50).
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Exercise 73. Calculate the horizontal shearing stress

(a) on a horizontal surface 3 inches above the neutral sur-

face, (b) on the neutral surface, (c) on the extreme fiber,

all at a section 2 feet from the left abutment of a uniformly

loaded beam 4 inches by 12 inches, span 10 feet, load 1000

pounds per foot run.

Vertical Shear. — To find the magnitude of the vertical

shear on any section of a beam, return to Fig. 35.

Consider an elemSnt dx in length and dy in depth whose

lower face coincides with MNJ, Fig. 35 (b). This

element is shown as a free body in Fig. 36.

(q'-dq')bdy

(.q"-da"}bdx

s&

pbdy ,

(p+dp)bdy

dx
q"bdx

q'bdy

Fig. 36

Taking moments about the axis AB, we havej

(q'bdy)dx- (q"bdx)dy- (pbdy)
d
-1 + {

(p+dp)bdy
\
& = 0,

or .

q»+
d±(dy.

2 yfc,
= o,

so that q' = q",

or the unit vertical shear q' equals the unit horizontal

shear q" at any point in the material of the beam.

Hereafter, therefore, we shall use q to represent either

the horizontal or vertical unit shear in pounds per square

inch.
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Variation of the Shear over a Beam Section. Rec-

tangular Section.— As q = jiy A , the siiear at any

distance y from the neutral axis of a rectangular section

(Fig. 37) will be

<2? I , 2
y

q = fT \y+01 2 <H
fi

i\& 2)
3ft
2 6A :

,(* 4/),

so that the shear varies as the square of y, as, repre-

sented by the parabola to the right of the section in

Fig- 37-

2/

.I.

Fig. 37

The maximum value of the shear is

a -a&,
ymax it 7

2 0#

and occurs at the neutral surface.

Exercise 74. Prove the above statement.

If the mean shear is denned as ff . the total shearing
oh'

force divided by the total area exposed to this shearing

force, then the greatest shear is 50% greater than the

mean shear for a rectangular section.
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Exercise 75. A beam 4 inches by 6 inches resists a

shearing force of 2500 pounds at a certain section. Find the

mean shearing stress and the greatest shearing stress on this

section.

The dangerous section for shear in a beam thus occurs

at the section resisting the greatest shearing force, and

the fibers along the neutral axis of this section must

withstand the greatest shearing stress; hence these

fibers must be investigated for shear.

Exercise 76. A simple wooden beam 1 foot long, carry-

ing a central load of 7000 pounds, has a section 1 inch by

12 inches. Calculate the factors of safety for normal stress

and shearing stress.

Exercise 77. A wooden cantilever 6 inches long, of rec-

tangular section, is to support a steady, uniformly distributed

load of 600 pounds. The width is to be 2 inches. Design

the beam for bending and investigate for shear.

Exercise 78. Design the beam in Ex. 77 for shear, and

investigate for bending.

I-section with Sharp Corners. — A standard 24-inch

I-beam, when the slope of the flanges is neglected and

an average depth of flange is used, has approximately

the dimensions shown in Fig. 38.

The shear at A, the lower edge of the upper flange, is

<la=fb
%y(±A) =^j("-SS) (7 X .9) =^(10.4),

at B, the upper edge of the web,

qb - ^ (1 1-55) (7 X.9)= ^(i45-6),
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at C, the neutral axis,

ff«=§Sy(^) = ^yK7'x.9) (n
V
SS)+(-5Xii.i) (5.5)1

=4* (207.2).

As the variation in the shear follows the parabolic law

in the interval from the extreme fiber to A , also from B

Fig. 38

to C, the variation may be represented by the curve to

the right of Fig. 38.

This graph clearly shows that in beams of I-section

the material of the web may for practical calculations be
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assumed to resist the whole shearing force. As already-

noted, the normal stresses due to bending reach their

greatest values at the extreme fibers of the beam, there-

fore in practice the material in the flanges alone may be

considered to resist the bending moment. These con-

clusions also hold in the case of built-up girders having

approximately I-shaped sections.

The total shearing force divided by the area of the

web is under these assumptions regarded as the unit

shear throughout the web.

The distribution of material in these sections is

evidently best suited to the case in hand, the material

being placed where it will be

stressed approximately to its

working stress throughout.

— 40-

TW T

%

Exercise 79. Calculate the

shear for the principal points in

the section shown in Fig. 39.

The section approximates the

section of the beam shown on

page 51.

Circular Sections.— The va-

riation of the shear over circu-

lar sections is more difficult to

determine, for now the free surface of the beam is no

longer vertical or horizontal, as in the case of rectangu-

lar sections.

The shear at A (Fig. 40) cannot be vertical, for if it

were this would entail a component shear along the

radius and normal to the free surface at A, and this in

turn would entail an equal shear in the tangent plane at

Fig. 39
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A and parallel to the axis of the beam (see page 134).

This last shear in the tangent plane at A cannot exist

without an external force acting in this same plane or

at right angles to it, and such forces are excluded in our

assumed conditions of loading.

Thus the only shear which can exist at A is a tan-

gential shear having the direction AO or OA and indi-

cated by the arrow q.

y

>.0

A<? I X
U -1 -1 ^

:L_

Fig. 40

In Fig. 40 consider the shear at a distance y\ from the

neutral axis. At the point A the shear must take the

direction of the tangent to the circle, for we assume no

longitudinal forces at this surface. The shearing

stresses at other points along the line AB are assumed to

pass through the point for want of a better guide

as to their directions. The vertical component of the

shear must still follow the law q = y~
J J

ydydz, where

/ l ydydz = 2 / y Vr2 — y
2 dy= - V(r2 —y 2

)
3 = ~ ;

J J Jm 3
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and b is the width of the section at a distance y^ from the

neutral axis, so that the vertical component of all shears

along AB is,

9v
/(12) 3 ^4

At A the total shear q can be found from

a r it

1 =
1

or *=7*'
» —

2

whence, o = ^V •

The maximum value of q occurs at the neutral axis,

where b = 2 r; thus

QmsLK = —
, = - (mean unit shear).

3^ 3

It should be noted that this calculation does not apply-

rigorously to rivets, for here external forces due to friction

act along the circumference of the rivet.

In general, it follows from the above that the shear

at and tangent to the boundary of any section sym-

metrical about a vertical axis is

q= ^Q* yXAA,
bl cos

<f>

'

where <j> is the angle between the tangent to the boundary

at the end of the chord considered and the chord itself,

as indicated in Fig. 40.

Criteria for Equal Strength in Shear and Bending for

Beams of Rectangular Section. — Consider, as an illus-

tration of the method of obtaining these criteria, the

case of a simple beam loaded at mid-span (Fig. 41) and

rectangular in section.
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Here the greatest stress due to bending is

, = My = Wl A. i5_ = 3JW
P

I 4'2'bh3 2bh2
'

and for the greatest shearing stress we have

, = Q.-A = W 12 i
i
A

>
M = jf

q
Ib

J
2 'bh3 '

b'
4'

2 4A&'
Thus

working normal stress _ j[_ _ 3 TF^ 4 6A _ 2J
working shearing stress q' 2 &A2

3 W h

or if twice the span divided by the depth of the beam is

equal to or less than the ratio of the unit normal stress

W

% + 1 »
Fig. 41.

to the unit shearing stress of the material, the beam
should be designed for shear.

Exercise 80. What is the ratio of the length to the depth

of a simple rectangular beam loaded at mid-span equally

strong in shear and bending if the material is (a) wood,

(b) steel?

Exercise 81. Deduce the criterion for a uniformly

loaded simple beam.

Exercise 82. Same as Ex. 81, for a cantilever loaded at

its end.

Exercise 83. Same as Ex. 81, for a uniformly loaded

cantilever beam.



CHAPTER III

DEFLECTION OF BEAMS DUE TO SIMPLE
BENDING

Section VII

THE DIFFERENTIAL EQUATION OF THE ELASTIC CURVE
AND ITS APPLICATION

In the previous chapter the strength of beams has

been considered. It often happens that strength is not

the only factor to consider in the design of beams. The

deformation of the beam due to a load must sometimes

be taken into account; thus the stiffness as well as the

strength of beams must often be investigated.

On page 48, the relation between the bending mo-

ment at any section and the radius of curvature of the

elastic curve (see page 23) of the beam has been dis-

cussed. This relation is expressed by the formula

1 M

The differential equation of the elastic curve can now

be obtained by placing

\dxlR= d%-
dx2

75
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the well-known expression for the radius of curvature.

In practical problems the slope,
(~J, of the beam is

always very small, so that (~j is negligible when added

to unity, and the simplified value for the radius of curva-

ture is

R =—
;

approximately.
ay

'

dx2

The differential equation of the elastic curve is thus

d2v
EIj* = Mx.

dx2

In this equation x and y represent the coordinates of any

point on the elastic curve, referred to the intersection

of the neutral surface of the unstressed beam and the

plane of bending as x-axis, and the line normal to this

axis through the left end of the beam as y-axis ; Mx is the

bending moment and I the second moment of area of

the beam section, both about the neutral axis of the

section which passes through the point (x, y). E, of

course, is Young's Modulus.

As an application to a concrete problem, let us find

the slope at any point, the greatest slope, the equation

of the elastic curve, and the greatest deflection of a

cantilever loaded at its end only (Fig. 42).

In the figure the neutral surface before and after

loading is shown. At any section AB at a distance x

from the left end of the beam the deflection is y and the

bending moment (paying due regard to the sign) is

- [W(l - x)], so that

ei<B = ~ w{i ~ x) (l)
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d2
yNote that for all values of x between o and I the —-.

dx~

will be negative; this shows that the elastic curve is

concave downward, as experience would dictate.

Fig. 42.

Integrating the differential equation twice and intro-

ducing the constants of integration, we obtain

xf + Ch ... (2)

.x)
3 + Cix + C2 ,

. (3)

dy
here ~ represents the slope of the elastic curve at any

ax

point, and y the deflection at this point.

To find the constants of integration the end condi-

tions must be satisfied. Thus, from the manner in which

dy
the beam is supported, as illustrated in Fig. 42, — = o,

when x = o, and also y = o when x = o.

From the first of these conditions,d can be obtained

from equation (2)

thus,

EI{6) = - (/ - o) 2 + Ci or Ci
2

_EE
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Similarly, from equation (3) by reason of the second

condition we have

EI(o) = - % (I - o) 3 - - P (o) + C2 or C2 = ^l3
.02 o

Hence, the slope at any point is

f-^W-xy-Fl-^fV-akl, (4)
ax 2 El 2 hi

and the deflection at any point is

y = " 6EI {
{l
~Xr + 3 l

* X~n = ~ 6EI {3 h2~ X3]
-
(S)

The greatest slope occurs when x = I, so that from

equation (4)

AM ^_Wl, .... (6)

WVgreatest 2 EI

and the greatest deflection at the free end, as obtained

from equation (5) by placing x = I, is

^greatest pi•

' ^''

From the last result the greatest deflection for a given

greatest fiber stress can readily be found by the use of

pi
the formula M = -L— • The greatest fiber stress, pc ,

occurs at the extreme fiber at the wall (the dangerous

P I
section) ; here M = Wl, so that Wl — 1-±-^ where c is the

c

distance from the neutral axis to the extreme fiber, and

P IW = j~, which on substitution in equation (7) yields
vC

instead Of ^greatest,
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the deflection for which the fiber stress at the extreme

fiber in the dangerous section is pc .

Exercise 84. Solve the above problem when the canti-

lever is fixed at the right end and the origin is assumed at the

left end.

Exercise 85. A wooden cantilever is 5 feet long and

4 inches by 8 inches in section,the longest side being vertical.

The concentrated load at the end is 800 pounds and E =

1,400,000 pounds* per square inch. Calculate the greatest

slope and deflection.

Exercise 86. (a) What will be the greatest allowable

deflection for the beam described in Ex. 85, if the fiber stress

(i.e., the stress on any fiber) is not to exceed 1200 pounds

per square inch?

(b) Will the load under these conditions be 800 pounds?

Exercise 87. Find the equation of the elastic curve, the

greatest slope, the greatest deflection, and the greatest deflec-

tion for a given fiber stress for a uniformly loaded cantilever

/ inches long and loaded with w pounds per inch.

Exercise 88. Same as Ex. 87, for a simple beam, span

/ inches, and loaded with w pounds per inch. Origin at left

support.

Exercise 89. Determine the proper distance from center

to center for 12-inch steel I-beams (/ = 215.8 inches4
), span

24 feet, to support a uniform load of 100 pounds per square

foot of floor area with a maximum deflection of 7£T of the

span.

Will these beams be strong enough to bear the load?

Exercise 90. What is the greatest span that a 10-inch

steel I-beam (/ = 12 2.1 inches4
), supported at both ends and

uniformly loaded, can bridge, if the greatest fiber stress is

not to exceed 16,000 pounds per square inch, and the maxi-

mum deflection is to be ^^ of the span? What total load

will this beam bear?
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Exercise 91. Find the equation of the elastic curve, the

greatest slope, the maximum deflection, and the deflection

which will produce a certain greatest fiber stress, pc , for a

simple beam, span /, loaded at mid-span with W pounds.

(Note that in this case there are two intervals to consider;

find the equation of the elastic curve for each interval, using

the left abutment as origin for both intervals.) In this

problem is the greatest deflection a maximum deflection ?

In problems involving two intervals, such as Ex. 91,

it is advisable to use a different origin for each interval.

This artifice is solely used to simplify the mathematical

calculations. Great care must be taken to keep this

change of origin constantly in mind during the calcula-

tion and in the application of the resulting equations of

the elastic curve.

To illustrate, consider a simple beam excentrically

loaded (Fig. 43). Here for the left interval assume the

-J

Fig. 43

origin at A, x increasing positively toward B; for the

right interval let C be the origin and assume x to in-

crease positively towards B. Then for the left interval

we have
d2
y W(l - a)

dx2
I

x,

EI
dy_ W(l-
d

x

2 I

Wc1;

(1)

(2)
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1

and EIy = W(J'

6

~ a) ^ + C 1x + C2 . . . (3)

For the right interval

M
dx>~ I

*' (4)

EI
dx

=
7i
x+Cs

' (5)

and EIy- }
^.x* + C0 + Cl (6)

1

In the left interval when x = o, y = o; so that C2 = o.

In the right interval when x = o, y = o; so that C4 = o.

The evaluation of Ci and C3 is more difficult. It should

be noted that the deflections and the slopes at B, the

meeting point of the intervals, must be the same for

both parts of the elastic curve; for the beam forms a

continuous curve, although the equation of its parts are

different.

Thus the slope at B from (2) [for x = a] must equal

the slope at B from (5) [for x = I — a], provided we

change the sign of the latter ; for these slopes are numer-

ically equal but opposite in sign by reason of our assump-

tion of the positive direction from C to B in the right

interval

or mLzA a> +Cl=_m )2+c i

21 L 2 1

Similarly, from (3) [for x = a] and (6) [for x = I — a]

we have

^^a'+Cta^il-ay + CUl-a). (8)
/ of

Equation (7) gives Ci + C 3
= ; •

2 1/
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Equation (8) gives Ci<z-C3 (l-a) = PFa(/
,T

a)l
(l-aa).

o i

By elimination C\ and C3 may be found to be

Wa(l- a) (a- 2 1)Cl=
61

n Wa(l-a){-l-a)
C°-

61

The equations of the elastic curve are, then, for the

left with origin at A

W (I — a)x , , , 2 A , s

J = 6lEI
(x

2 + a2 - 2 Pi), . . (g)

for the right with origin at C

y= f§i {x2 + a2 ~ P)
-

(l0)

To find the deflection under the load, put x = a in

equation (9)

W(l- a)2a2

whence, yB=- ^^ ,

or put x = I — a in equation (10)

Wa2
(I - a)2

and again, yB = ^
To find the maximum deflection the corresponding

value of x must be found.

As the maximum deflection evidently occurs in the

longer interval, and as we have tacitly assumed a < -
2

put the first derivative of equation (10) equal to zero,

whence,
^yj^ (3 x

2 + a2 - I
2
) = o,
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whence x vf-f*. the distance from C at which the

maximum deflection occurs.

This value of x substituted in equation (10) gives

ym&x —
Wa (I

2 - a?) /P - a2

g mi V 3

Exercise 92. What result is obtained for ym„ from
equation (9) ? Interpret your answer.

Exercise 93. (a) Find the deflection at the quarter

points (for which x = - in either interval) for a simple beam
4

loaded at one quarter point.

(b) What is the maximum deflection and its location under
the loading in (a) ?

Exercise 94. From equations (1) to (10) of the above
example obtain the answers to Ex. 91.

When a simple beam supports two loads symmetri-

cally placed (Fig. 44), it is much easier to find the deflec-

tions by the principle of superposition and the above
results, than by a new integration.

Fig. 44

In Fig. 44 the dotted lines show the deflections due

to each load acting separately and the full line shows the

deflections due to both loads acting simultaneously.
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These latter deflections are evidently the sum of the

corresponding deflections due to each load acting alone.

By reason of the symmetrical loading B 2 = C 4

and B 1 = C 3 ; by the principle of superposition

B$ = B2 + Bi, whence B$ = B2 + Cs-

From equation (9), page 82, for x = a

W(l- a)VB2= ~ 3IEI '

and from equation (10), page 82, for x = a,

(r . Wa2 (P - 2 g2
)

so that the required deflection

B 5 = (B 1) + (C 3 ) = -^ ( 2 P- 4 al + 2 d'+ P - 2a2
),

= -6£7 (3^ 4fl) -

Exercise 95. Find the deflection under either load if the

beam is loaded at the quarter points.

Exercise 96. Find the maximum deflection for the beam

shown in Fig. 44.

The two following exercises should be solved, without cal-

culus, by using any appropriate equations deduced in this

chapter.

Exercise 97. A simple beam I inches long rests on end

supports and bears a total uniform load of W pounds.

Another support just touches the bent beam at mid-span.

How much must this middle support be raised in order that

the end supports shall just touch the beam but support no

load?

Exercise 98. A wooden cantilever 15 feet long, 3 inches

wide, and 4 inches deep carries a load of 100 pounds 5 feet
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from the free end. Find the deflection at the end due to

this load.

Propped Beams. — Simple beams supported at another

point besides the ends, or cantilevers supported at some

point other than the fixed end, are called propped beams.

The pressure upon these extra props cannot be found

by means of the principles of statics alone; the elastic

properties of the beam must be considered in their

determination. The following example will illustrate the

application of the principle of superposition to such

problems.

Consider a uniformly loaded cantilever supported by

a prop at its end, this prop to maintain the free end on a

level with the fixed end of the beam (Fig. 45).

Fig. 45

If the prop is removed the deflection at the end will

be —— (see Ex. 87). Now the reaction of the prop,
8 EI

R, must equal the concentrated force, acting alone,
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necessary to deflect the end of the cantilever through

wl4

inches so that it returns to the required level.
8 EI

Wl%

Thus from the formula latest = —^ (page 78)

, wl4 Rl3
D $wl ,

wehave — =— or i?=YP0unds,

the pressure on the prop.

Exercise 99. Find the pressure on a prop which keeps

the free end of a cantilever (loaded at the center of its length,

/, with a concentrated load, W) at the same level as the fixed

end.

Exercise 100. A beam is continuous over three supports,

each span is I inches long and the load is w pounds per inch

run. Find the pressure on each of the three props, (a) by

considering the problem as a simple beam; (b) by consider-

ing the problem as a cantilever.

Exercise ioi. A beam is continuous over three supports,

each span I inches long; the only loads are W pounds con-

centrated at each mid-span. Find the reactions of supports.

Exercise 102. A cantilever, length, I, carries a uniformly

distributed load, w, over three-fourths of its length from the

fixed end, and is propped at the free end to the level of the

fixed end. What force acts upon the prop?

Section VIII

THE DIFFERENTIAL EQUATIONS OF BEAMS

On page 33 it was shown that

wx = -^->
ax

and that Ox = —~ ;^ dx
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followed on page 76 by the proof that

M = d?y

EI dx2
'

Combining these equations, the space rate of loading,

wx , can be expressed as follows

:

and wx

dx

dQ*

dx
EI

dx3

dx*

As an illustration of the integration of this equation

of the fourth order, consider the deflection of a simple

beam loaded with a distributed load varying gradually

from zero, over one abutment, to w pounds per inch

over the other abutment.

wx
Fig. 46 illustrates the loading. In this case wx —

so that

I

Fig. 46

the minus sign indicating downward loading. Succes-

sive integrations give

EI f2
™? + Cl ,

dx3 2

1

,#2 TO
E1 7i = -1CT + C ix + C*>

dx2 0/

(1)

(2)
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„ T dy wxA CiX2
. n n ( s

EIrf = -A + Cix + C3 , ... (3)
ax 24 1 2

£,y
__i«L + c£ +^ + c* + c4 . . (4)

I20t 6 2

d3v
Now as £7 —~ represents the shearing force Qx , at the

dx?

ft 'V 7£J£

point a;, Ci can be found by putting EI -7^ = —
- when

x = o, for the shearing force at the left end equals the

reaction at that point; hence

Again, £7 —^ is the bending moment at any section x

units from the left origin, and as the bending moment

EI -r% = o when x = o,
oar

C2 = o.

As the slope is not known at any point of the beam,

pass to equation (4).

Here y = o when x = o, .'. C4 = o.

Also y = o when x = I,

A , „ . w/4 wZ4
7 w/4

so that L3I = H — o = — '-—-!
120 36 300

or C3 = - i
-r- •

360

Substituting the values of the constants of integra-

tion just found in equations (1), (2), (3), and (4), we

obtain

w
°
= EI

d*
=
-T' (5)
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o-«£- )3X>-12

slope -%— i6oEIl

deflection = y= -

Fig. 47

From equations (8) and (9) the slopes and deflections

including the greatest and maximum values can be

obtained as before.
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In Fig. 47 the equations (5) to (9) are plotted; note

their relations as derivative curves, and compute all

principal values and their location and indicate same on

Fig- 47-

Exercise 103. Deduce the above results from the equa-

<Pv
tion Mx = EI -A-



CHAPTER IV

STATICALLY INDETERMINATE BEAMS

Section IX

PROPPED AND BUILT-IN BEAMS

Whenever a free body is in equilibrium under the

action of coplanar forces, three independent equations,

and only three, can be written expressive of the condi-

tions of equilibrium. Thus only three unknown quan-

tities can in general exist in such a problem.

Any problem in planar equilibrium involving more

than three unknown quantities cannot be solved by

the principles of statics alone, but requires in addition

the use of the principles of mechanics of materials; such

problems are said to be statically indeterminate.

In Fig. 48 (a) the reactions at the wall involve an

unknown force, Ri, and an unknown couple, Mi, and in

addition there is the unknown force R at the propped

end. As the forces in this problem are parallel, statics

furnishes only two equations, and thus the problem is

statically indeterminate.

To illustrate the method of procedure in problems of

this sort, consider this specific problem.

A horizontal beam, fixed at one end and supported at

the other end at the same level as the fixed end, carries

a uniformly distributed load; it is required to find (1) the

91
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reaction of the support, (2) the equation of the elastic

curve, (3) the dangerous section, (4) the deflections,

(5) the point of inflection, and (6) to sketch the dia-

grams of shearing forces, bending movements, slopes, and

deflections.

Fig. 48

Fig. 48 (a) illustrates the problem. It is impossible

to find the reaction R by the statical conditions of

equilibrium.
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The start is thus made with the differential equation

of the bent beam.

ElQ.-M.-Rx-?*, • • • (1)
dx2

2

whence EI (
dA = R* - ™? + Cu . . . (2)
\dx/ 2

and Ely = R^ -^ + dx +C . (3)
* o 24

It now remains to find the constants of integration

Ci and C2 , as well as the reaction R. To accomplish this

we have the following conditions:

x = I when (-r ) = o, I®~
a; = o when 3/ = o, II

x = I when y = o Ill

From condition I it follows that C\ = +— •

2 6

From condition II it follows that C2 = o.

From condition III we have

RP wl* Rl3
,
wli_ 1_ =0

6 24 2

whence R = ^wl,
o

and thus C\ = •

48

Equations (1), (2), and (3) can now be rewritten as

follows:

M,- £/(g) = f(3i - 4 »). . . (4)
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"(D-s"*-"-"--
• (5)

EIy=-(i
)
lxi -2x?-P). . . (6)

4°

To locate the dangerous section, put

w
8

3l
whence

„ U1V1 x IV / 7 O \

-9-,and the maximum bending moment is + -a- wl2
, but the

125

bending moment at the wall is — —
-, therefore the
o

dangerous section is at the wall.

The point of inflection of the elastic curve occurs

d2ywhen—% = o, as is demonstrated in calculus, so that
dxr

,
I

equation (4) equated to zero gives x = o and — • The
4

point of inflection is located at three-fourths of the span

from the propped end. Interpret x = o.

The maximum deflection occurs when the slope is

zero. Equating (5) to zero and solving for x, we find

7 A
Wli

x = .4215 1 and ymaK = - .0054— •

All these results can best be summed up in diagrams of

S.F., B.M., slopes, and deflections shown in Fig. 48 (b),

(c), (d), and (e) respectively.

Exercise 104. Same conditions and requirements as in

the above example, except that the beam is weightless and

loaded at mid-span with W pounds.
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As another illustration, consider a weightless beam

built in at both ends and loaded at mid-span with W
pounds. (Fig. 49 (a)).

w

Fig. 49

Here each wall must support one-half of the load, for

the sum of the vertical forces must be zero and by sym-
W

metry the reactions must be equal; thus Ri = R2 = —
Moreover, as the ends of the beam are kept horizontal,

equal moments Mi and Mi must act at the ends.
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Thus, for the interval x = o to x = -. v

2

EI-r% = Mx = —x - Mu
ax2 2

EI <t = Wa?_ MiX + Ch
ax 4

T^iC^ X2

and Ely = Mi \- C xx + C 2 .

12 2

As , = o when x = o, G.= o;
aa;

and as y = o when * = o, C2 = o.

Also by reason of the symmetrical loading

f- = o when a; = ->

aa; 2

whence
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The curves of shearing forces, bending moments,
slopes, and deflections are shown in Fig. 49 (b), (c), (d),

and (e), respectively. It should be noted that there are

two intervals and that the equations of these curves for

the right-hand interval have not been found.

Exercise 105. Find the reaction, bending moment at

the wall, maximum bending moment, dangerous section,

maximum deflection^ points of inflection, and deflection at

the center of the span for a given fiber stress for a uniformly

loaded beam "fixed" at both ends.

Section X

CONTINUOUS BEAMS

Beams extending without break over more than two

supports are known as continuous beams.

It is impossible to find the reactions of the supports

of a continuous beam by the principle of statics alone,

so that here again we meet a statically indeterminate

problem.

Exercise 106. Show by the methods of the previous

section that the reactions of the two center supports of a

continuous beam extending over three equal spans, /, and

uniformly loaded are each j^ wl. Assume the origin for the

first span at the left-hand abutment and for the next span at

its left-hand abutment.

Clapeyron's Theorem of Three Moments. — The cal-

culation of the reactions of the supports of a continuous

beam by the methods outlined above is a tedious oper-

ation, as Ex. 106 shows.
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The theorem of three moments gathers in a single

statement the results of the calculations to be performed

and obviates their continuous repetition.

The proof of this theorem, when the spans are uni-

formly loaded and the supports are all at the same level,

follows.

Consider any two adjacent spans of a continuous

beam (Fig. 50), the loading of each span to be uniformly

11
w 1 in

Ri

y<- x h
Fig. 50

distributed but not necessarily of equal intensity for

both spans.

Let Mi, M2, M3 be the bending moments at the sup-

ports (I), (II), and (III) respectively, and Rh i?2 , R3

the corresponding reactions.

Consider span (II) -(III) with origin at (II)

then

whence

and

and as

"©)-"
»©)— -

'" + C

fd
2
yEI

\dxV
\- Cix + d,

(1)

. (2)

• (3)

-(£)=-*
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the bending moment at any section x in the span (II)-

(III) is

Mx = -— + Ci* + C,.
2

To find C\, note that EI (73) in equation (2) equals

Qx, the shear at the section at which the bending moment
is Mx , and as x diminishes Qx approaches more and more

the value of the shear infinitely close to (II) but on

its right. (Study Fig. 52 (a), page 104, where the full

lines indicate the shearing forces acting in the contin-

uous beam.)

Thus, if F2 represents the shear infinitely close to

(II) but on its right, then Qx = F2 when x = o and by

equation (2)

Ci = Ft
',

so that M*=- — +F2'x + C2 ;

2

also when x = o, Mx = M2 ,
'. C2 = M2 ,

and we have,

Mx =-— + F2'x + M2 (4)
2

Place

EI^ = Mx =-^f + F2'x + M2 ,. . (S )

and integrate, then

EI
/dj>\ _^ +W + M2X + Cs (6)
\dx/ 6 2

If we designate the slope of the elastic curve at (II)

by tan a, we may put x = o and j- = tan a,
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so that d = EI (tan a),

and

EI [ -f
- tan a = — + — (- Af23. . (7)

\dx / 6 2

Integrating once more

„ T
. , w'x* . F2X3

. M2X2

EI (y — x tan a) = 1 ;—h

24 6 2

+ [C = oasx = when y = o]. (8)

Also as y = o when x = V from (8) we have

-E/tan*=-^ +^ +^. • (9)

24 2

from equation (4) when x = I',

we obtain M,=-— + F2T + M,, . . . (10)
2

from which Fz may be found; this when substituted in

equation (9) gives

- £/tan*=^ + ^-' + ^-'.
• •

(ix)

24 3 6

From span (I)-(II), using (II) as origin so that x is

positive when measured towards the left, we obtain

+ £7tana=^ +^ +^. • • («)
24 3 6

Adding equations (11) and (12), we have

M xi + 2 m2 (i + n + jf.r = -
wls + w'

1
'3

,

4

this is the theorem of three moments. It furnishes

a relation between the bending moments at three con-

secutive supports and the loading. By applying this

theorem to pairs of successive, consecutive spans, as

many equations as there are supports less two can be
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obtained and the end conditions will supply the two

remaining equations necessary for finding the bending

moment over each support (see page 102).

The M's being known, the F's can be calculated from

equations similar to equation (10).

The points of maximum moments are of course found

by placing —r-2 = Qx = o, and the points of inflection
ax

by putting Mx =M o.

The reaction may be found by adding the values of

the F's infinitely close to the support and on either side

of it. (See Fig. 52 (a), page 104.)

For instance, the reaction at (II) is R2 = F2
' + F2 if

F2 is the shear in span (I) -(II) infinitely close to (II)

and F2
' is the shear in span (II)-(III) infinitely close to

(II).

* t \ b" Mi -Mi w'V
Here equation (10) gives t 2

=
-p

1

The similar equation for span (I) -(II),

Mx
= - — + F2l + Mt,

2

_ Mi — M2 . wl
gives Ft = j I-

— -

and
Mi- Mi , Mi - Mi ,

wl + w'V
R2 = Fi' + F2 =

"±6

y
"^ + -L-^ +

Another method of finding the reactions is illustrated

in the following solution of Ex. 106, page 97.

Referring to Fig. 51, and applying the theorem to the

spans 1-2 and 2-3, we have

M1l + 2Mi( 2 l)+M3l=-^^^- (1)
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Similarly for spans 2-3 and 3-4,

M2l + 2 Mi (2 I) + MJ = -

Thus two equations and four unknowns.

w

2
(2)

(1) (2) (3) (4)

l.
1—JL

1
—,L-

|ri |r. h
Fig. 51

But in this case the B.M. at 1 is zero, this being a

free end,

or Mi = o, (3)

also M4 = o (4)

Solving equations (1), (2), (3), and (4), we have from

from (2)

so that

4M2 + M 3 =
2

M2 + 4M3

wl2

j

2

M2 = and M3
=

10 10

From Fig. 51, by the definition of bending moments

1!)b lit}]/

Mi = Ril . but it also equals —
10

so that Ri= +
2 11)1

and taking moments about (3), Fig. 51

= M
4wl2

1 1 wl2

Rl{2 l)+R2 Q)-^^1 = M3
=-^

2 10

whence R4 — \- 2 wl2 -
10 5

and Ki =
10

10
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Exercise 107. Find the
-

reactions for a beam continuous

over four equal spans, length of each span I inches, and bear-

ing a uniformly distributed load of w pounds per inch run.

Exercise 108. A continuous beam (spans h, I, h) is

loaded uniformly on the middle span only. Find the reactions

at the end abutments.

Exercise 109. Sketch the diagrams of S.F. and B.M. for

the beam described in Ex. 108.

Exercise no.»Sketch the diagrams of S.F. and B.M. for

the beam described in Ex. 106.

Exercise hi. In Ex. 106, assume the load over each span

supported by a simple beam and draw the S.F. and B.M.

diagrams under this condition.

The full lilies in Fig. 52 show at (a) the shearing force

and at (b) the bending moment diagrams for the contin-

uous beam described in Ex. 107.

The sucessive reactions at the supports are

— wl, ^~wl, —wl, ~;Wl, —wl.
28 '28 '28 '28 ' 28

The shearing forces at the beginning and end of each

span are

—wl, iwl; „wl, iwl;
28 28 28 ' 28 '

-^wl, „wl; -j-wl, -wl.
28 ' 28 ' 28 ' 28

The bending moments at the beginning of each span,

the maximum bending moment in each span, and the

bending moment at the end of each span are

121 .„ 168 „ 168 ,„

wr, — w/
' , — tev.',

1568 ' 1568 ' 1568

-^rzwP, — wl2
;

—wl2
, etc.

1568 1568 1568 '
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If the same load were carried' by simple beams (i.e., if

the continuous beam were cut over each support) the

shearing force and the bending moment diagrams would

( (W

Fig. 52

change to those snown by the dotted lines in Fig. 52 (a)

and (b).

Here the greatest shear is — wl and the maximum
28

bending moment is
196

1568
at mid-span in each span.
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These diagrams illustrate the following facts: (a) that

the greatest bending moments in the continuous beam
occur over the supports and in simple beams at mid-

span, (b) that the greatest and the average bending mo-

ments are less for the continuous beam than for the

simple beams, (c) that the shearing force changes but

slightly when the continuous beam is replaced by simple

beams.

As continuous beams are usually built-up girders of

varying cross section, it follows that the heaviest por-

tions of a continuous beam lie over or near the supports,

and thus the weight of the girder does not materially

increase the bending moment, as it must do in the case

of the simple beams, which must be made strongest and

thus heaviest at mid-span. Also, the weight of the con-

tinuous beam would on the whole be less than the sum
of the weights of the separate simple beams.

To counterbalance these advantages, the use of the

continuous beam has serious disadvantages. It should

be noted that the slightest change in level in the abut-

ments or want of straightness in the beam changes the

conditions governing the computation of the bending

moments. Also, moving loads passing over the beam

will cause the points of inflection (zero bending moment)

to shift their positions, and thus near such points the

bending moments must change from plus to minus, or

vice versa. The greater the moving load as compared

to the permanent load on the structure, the greater this

disadvantage; so that the longer the spans, the less will

this effect appear, for under these conditions the weight

of the structure forms the greater part of the total

load.
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Owing to the above disadvantages, continuous beams

are now seldom used.

In cantilever bridges, pin connections are made at

some of the points at which the points of inflection would

occur if the bridge were replaced by a continuous, uni-

formly loaded beam. These pin connections transmit

only shearing forces, so that the bending moments at

such points must remain zero, no matter how the bridge

may be loaded. This construction simplifies the cal-

culation of the stresses (the structures being now static-

ally determinate) and at the same time does away with

the disadvantages inherent to continuous structures.

At which points in the continuous beam described in

Ex. 106 could hinges or pin connections be introduced,

as indicated in the above paragraph? Could hinges be

placed at all points of inflection in Ex. 106?



CHAPTER V

STRUTS AND COLUMNS

Section XI

ECCENTRIC LONGITUDINAL LOADS (SHORT COLUMNS)

Short columns have already been discussed under

axial loads (page n). Here the resultant pressure

passed through the center of area of the section; the

unit stress produced was found by dividing the total

force by the area of the section upon which it acts.

A short column loaded parallel to its axis, but also

eccentrically, the resultant load no longer passing through

the center of area of the section but still passing through

an axis of symmetry of the section, will now be considered.

In Fig. 53, showing a plan and elevation of the column

considered, P is the eccentric load, and e its eccentricity.

Consider two equal and opposite forces, P, (dotted in

Fig. 53) applied at the center of area of the section;

these will not disturb the conditions of the problem.

We now have a central load P and a couple of moment

Pe acting upon the section. The central load, P, pro-

p
duces a uniform compression, pc = -7> throughout the

section, where A is the area of the section. This stress

is represented in Fig. 54 by the dotted rectangle.

The couple (moment Pe) acts upon the section in

exactly the same manner as the bending moment acts

107
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upon a beam section, so that the formula M PL

y

applies and the stress calculated by its means must be

p
added to the direct stress p c

— —•

For the present calculation I may be conveniently

expressed in terms of the " radius of gyration," k, of the

section by means of the de-

fining equation I = Ak2
. The

neutral axis, NA, about

which / and k are to be

reckoned, must evidently

pass through and be per-

pendicular to GE, the axis

of symmetry of the section.

The stress due to the eccen-

tricity of the load is thus

P = My _ (Pe)y

I
" Ak2

where y is the distance from

NA, the neutral axis, to

that element of the section

on which the stress is p.

When y is measured to the

right of NA, in Fig. 53, p is

evidently a compressive stress, and when toward the left

a tensile stress. Moreover, the variations of this stress

follow the straight-line law and are plotted in Fig. 54 as

a dotted-dashed line. The total combined stress, shown

by the full line, is obtained by adding the stress, p c , due

to direct compression, to the stress, p, due to the eccen-

tricity of the load.

Center of are

Center of pressure

Fig- S3
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The greatest stress on the section (at the extreme right)

is thus a compression

ehi
Pi = Pc+ Pv^)H = Pc-\- Pc-jj = pAi + 1 +ehi

,

Fig. 54

and the least stress on the section (at the extreme left) is

if this expression* becomes

negative, then the stress be-

comes tensile.

Exercise 112. (a) What is

the stress in the above case at

the center of area of the sec-

tion? (b) Along the neutral

axis of the section ? (c) At any

point of the section?

Exercise 113. "(a) At what distance from NA, Fig 53,

is the stress zero ? (b) Under what condition will the stress

in some parts of the material become tensile?

The line parallel to NA, the neutral axis of the section,

along which no stress occurs, is called the neutral axis

of stress.

Exercise i 14. In what ratio is the strength of the column

reduced by the eccentricity of the load?

Exercise 115. If the section is rectangular and h X b,

what is the greatest eccentricity allowable if no tension is to

result ?

The above exercise shows that to avoid tension on a

rectangular section of a material in compression the

resultant load must act within the middle third. (Prove

this.)
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Exercise 116. What is the corresponding rule for a

hollow circular section having as internal and external radii

r and R respectively?

Exercise 117. On a short cast-iron column, 6 inches

external and 5 inches internal diameter, the load is 20,000

pounds and the center of pressure lies a half-inch from the

center of the section. Find the greatest and least unit

stress.

Exercise 118. The vertical column of a crane is an I-

beam 25 inches deep, section area 24 square inches, / about a

neutral axis parallel to the flanges is 3000 inches4
. Find the

greatest and the least unit stress due to a load of 20,000 pounds

carried 14 feet from the center of the section of the column.

The above theory can be applied to " cranked " bars,

machine frames, short columns, etc.; but in the case of

columns in which the length is more than 8 to 10 times

the least width the theory given on page in must be

applied. In the case of crane hooks or any bars of con-

siderable curvature the method outlined above must

not be used; this theory giving results nearly 50 per cent

from the truth in some cases.

As an application to the stability of masonry structures

in which tension must always be avoided, solve the

following exercise:

Exercise 119. The section of a masonry dam, with a

vertical face subject to water pressure, has a height h and a

thickness, h at top and h at bottom. Assuming the water

level at the top of the dam, the vertical section of the dam
trapezoidal, and the specific gravity of the masonry as s,

find the height of the dam so that the resultant pressure acts

at the outer middle third of the base of the section.
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Section XII

BUCKLING (LONG COLUMNS)

A column or strut is a bar under compressive loads.

If such columns are composed of homogeneous material,

if they are originally perfectly straight, and if the loads

are axially applied, then theoretically the column would

fail by crushing. Practically these conditions are never

realized, and columns whose length exceeds but a few

times their least lateral dimension show a tendency to

buckle long before the crushing stress is reached. This

buckling always takes place in that lateral direction

which is perpendicular to the neutral axis of the section

about which the moment of inertia is least, this being

the weakest direction of the column. It is thus advisable,

as a saving of material, to have the moments of inertia

about the two principal axes of the section of the column

equal to each other.

Exercise 120. Two joists, each 2 inches by 4 inches, are

to be placed 6 inches apart between centers, and connected

by two other joists, each 8 inches by x inches, so as to form

a hollow rectangular column. Find the proper value of x.

Exercise 121. Two I-beams, each having principal mo-

ments of inertia of 14.62 inches4 and 441.7 inches4 and a sec-

tional area of 12.48 inches2, are to be used as a column. How
far apart center to center should they be placed?

The effect of the lacing holding these I-beams together is

to be neglected in the calculation.

The theory of column strength is unfortunately very

incomplete. This is due principally to the numer-

ous practical conditions involved, such as the slight
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variation from perfect straightness in the unloaded col-

umn, the end conditions, etc., which cannot be subjected

to mathematical investigation.

The discussion in this section will be divided into,

first, a discussion of formulas having a theoretical basis,

and then, a consideration of some empirical formulas.

Euler's Formula. — Consider first the oldest, and only

theoretical formula, deduced by Euler in 1757. This

discussion deals with long, slender columns perfectly

straight, of homogeneous material, and with the load

axially applied so that owing to the load no buckling

could ever occur. Such columns are called ideal

columns.

Euler assumed that an ideal column would, when

lightly loaded and then deflected (buckled) by a lateral

force, return to its original condition of perfect straight-

ness when the deflecting force is removed. That par-

ticular load under which the column would fail to

straighten after a removal of the deflecting force he

called the critical load. An ever so slight increase of

the load beyond its critical value would cause an ever-

increasing deflection, and finally failure by buckling.

This critical load is the value we wish to find.

In any discussion of column formulas the end con-

ditions are of great importance. Fig. 55 illustrates

these conditions and the corresponding manner of buck-

ling is indicated by dotted lines. (I) shows a column

with round or pin-connected ends, (II) a column with

one end fixed and the other end pin-connected, (III) both

ends fixed, (IV) one end free, the other fixed. These

cases will be referred to as Cases I, II, III, and IV,

respectively.
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Consider Case I, the pin-ended column; for conve-

nience assume the column in a horizontal position (when

tssss^ rny^

&

I

m

in IV

Fig. ss

it may more properly be called a strut) and weightless

(Fig. 56). The load P is to be the critical load, so that

the column displaced laterally remains in equilibrium

Fig. 56

under any displacement, neither increasing in deflection

nor straightening itself as it would under a load less than

P.

Assuming that EI (j^j = Mx , the bending moment at
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any point, by analogy to the case of a bent beam, we

have

Ei%-P(-y) — Py,

\dx) dx2 dx

Integrating, we have

E1&' p^f + C') '

Separating the variables

>/^dx = -^-
ei VcT^f

and integrating again

V^x = sin 1 —^= + C2 .

EI VC[

Now let the maximum deflection due to buckling be /,

then -f-
= o when y = — /, in which case Ci = f

2
, and

ax

y = o when x = o, whence C2 = — sin
-1 o = — mr, where

n is any integer. So that

v^ -iVx = sin ^— tnr,

or y =/sin
j
y — x + mrl . . . . (1)

As yet P has not been found and our equation contains

a parameter / which may take any value without affect-

ing P, the critical load.
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Now as y = o when x = I,

we have y —— I = sin
-1 o — rnr,

= mi — mr,

= (m — n)ir,

where m is any integer.

T, D 7T
2 (m — n) 2 EI , ,

Thus P = —^ —^
(2)

and by substitution in equation (i)

y=/sinj-A-y ^aj+MTT ... (3)

If equation (3) be plotted the various forms which a

buckling strut may assume will be found. To do this,

let us assume n = o, and m equal successively to o, 1, 2,3.

The first set of values n = o, m = o give P = o,

y = o. This of course means that no buckling occurs

under zero load.

Next « = o and w = 1 give

7T
2£Z

P = and y=/sin(-Tr), ... (a)
/
2

then n = o and w = 2 give

„ 4 7T
2£7 , , . (2irX\ ,,.P=^~p— and y=/sin^~j, . . (b)

and n = o and m = 3 give

P =^ and 3-/sin(*f), . . (c)

The curves corresponding to equations (a), (b), and

(c) are plotted in Fig. 57.

Exercise 122. Investigate equations (2) and (3) above

for m = 1, n = o, 1, 2, 3.
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From the above results the following inferences can

be drawn. That for

Case I. (Pin-connected ends.)

Pi =
k2

is the critical load (see page 118) deduced

from equations and figure (a), where h is the length of

the column in inches.

Case II. (one end fixed, the other pin-connected) can

be approximated from Fig. 57 (b) and the corresponding

Fig. 57

equations when n = o and m = 2 if l2 = § I, h being now

the length of the column or strut in inches.

Thus
4^2

;

(seepage 118).

It should be noted that in this approximation the pin

end is not in line with the fixed end, the lateral displace-

ment being /.
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A more exact calculation* (beyond the scope of this

book) gives as the critical load.

Case III. (Both ends fixed.) From Fig. 57 (c) and

the corresponding equations, placing l3 = § /, where l3

is now the length of the strut in inches, we have

P3 = —
yi
— as the critical load (see page 118).

h

Case IV. (One 'end fixed, the other free.) From
Fig. 57 (a) and the corresponding equations when

h = - we have
2

Pi = —77- (see page 118),

/ being the length of the strut in inches.

Exercise 123. Obtain the critical load for Case II from

Fig. 57 (c).

Exercise 124. Obtain the critical load for Case I from

(1) Fig. 57(b); (2) Fig. 57 (c).

Exercise 125. A solid pin-connected steel column 6 inches

in diameter, 37 feet long, can bear what critical load?

Exercise 126. A square wooden column with flat ends

is to be 20 feet long and carry a load of 9500 pounds. Com-
pute its size for a "factor of safety" of 10.

Slenderness Ratio of a Column. — Euler's Equations

may be changed to the following form:

D EI EAk2 cEAP = C — = G
P

(I)"

where k is the minimum " radius of gyration."

* Grashof , Theorie der Elasticitat und Festigkeit,
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The ratio (-
J
is known as the slenderness ratio of the

column.

Euler's Equations should never be applied unless the

slenderness ratio of the column is greater than 150. This

limit has been established by numerous experiments which

show that the values of P obtained from Euler's Equa-

tions for shorter columns are much too large.

Exercise 127. Compute the slenderness ratio for Exs. 125

and 126.

Rankine's Formula.— This formula, obtained in vari-

ous ways by Navier and Schwarz as well as Rankine, is the

result of an attempt to produce a form-

ula which will give satisfactory results

for columns having a smaller slenderness

ratio than the columns to which Euler's

Equations apply.

Another objection to Euler's Equa-

tions is the fact that it introduces no

constant for the strength of the ma-

terial.

To develop Rankine's Formula, let

W = the load upon the column,

A = its sectional area,

I = its minimum principal moment
of inertia,

k = the corresponding radius of gy-

ration,

c = the distance of the extreme compression fiber

from the corresponding neutral axis,

a = the maximum deflection due to buckling,

p = greatest compressive stress in the column.

CM

Fig. 58
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Then a may be regarded as the eccentricity of the load

(Fig. 58), and the compressive stress due to this eccen-

tricity is p' = —j- ; adding to this the direct compressive

stress p" = —
, the greatest compressive stress in the

column is



120 MECHANICS OF MATERIALS

Rankine's Formula may be used with the above

constants for values of (-) between 20 and 200.

Exercise 128. A hollow wooden column of rectangular

section, outside dimensions 4 inches by 5 inches, inside

3 inches by 4 inches, length 18 feet, is to carry 5400 pounds;

the ends are fixed. Find the greatest fiber stress.

Exercise 129. Find the safe load for a fixed-ended timber

column 3 inches by 4 inches, 10 feet long, if the allowable

stress is 800 pounds per square inch. If the column were

"very short" what would be the safe load?

Exercise 130. Find the size of a square wooden column,

fixed at the ends, and 24 feet long, to carry 100,000 pounds,

the factor of safety to be 10.

Exercise 131. The diameter of a piston is 18 inches and

the greatest steam pressure 150 pounds per square inch.

Find the diameter of a steel piston

rod 5 feet long, factor of safety 10.

This compression member is to be

considered pin-connected. Why?
What is the slenderness ratio of

this rod?

Exercise 132. A column is

built up of two channels and an

I-beam as shown in Fig. 59. The

properties of the channels and I-

beam are shown in Fig. 60; these

are taken from the handbook of

the Carnegie Steel Company, (a) Compute the two prin-

cipal "moments of inertia" of this section, (b) If the un-

supported length of this column is 15 feet and its ends are

fixed, what load can it safely carry ?

Rankine's Formula for the strength of columns may
be called a semirational one. Many entirely empirical
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formulas have been devised. Of these may be men-

tioned J. B. Johnson's parabolic formula* and Thomas H.

Johnson's straight-line formulaf.

1 „ i

re- \& *

—2
Area-4.84 !n.»

Ii = 15.2 in.<

U =1.70 in.1

T
c. ofA. I

-*l-

.i____y__L.

Area -6.25 m.a

li =47.8 in.«

-2 I 2 =2.25 in,*

Fig. 6o

The straight-line formula, a very convenient one- for

general use, is usually stated as follows:

For steel columns in buildings, factor of safety in-

cluded,

* = 16,000 — 6o ( 7 ), for both ends pin-connected,
\kJ

l\

for both ends fixed.

* Johnson's Framed Structures, 8th ed., 1905, pp. 159-171, and

Trans. Amer. Soc. Civil Engrs., Vol. XV., pp. 518-536-

t Trans. Amer. Soc. Civil Engrs., 1886, p. 530.

p = 16,000 — 57 (-
J, for one end pin-connected, the

other fixed,

p = 16,000 — 45



122 MECHANICS OF MATERIALS

For steel columns in bridges, factor of safety included,

p = 16,000 — 8o(-j, both ends pin-connected,

p = 16,000 — 60 (-], both ends fixed.

In these equations p is the safe working stress in

pounds per square inch of column section, I is the un-

supported length in inches, and k is the least radius of

gyration of the column section in inches; moreover,

(I)
should not exceed 100.

The following are forms of Rankine's Formula much

used for obtaining the safe dead load, W, in pounds in

terms of the sectional area of columns in square inches:

W = '—jj , for soft steel,

14,000 k*

and W = —"—
-5 , for medium steel.

1 1,000 kl

Here no allowance is made for various end connections.



CHAPTER VI

TORSION

Section XIII

STRESS AND STRAIN DUE TO TORSION

Straight bars have been considered under the action

of forces producing compression, tension, flexure, and

buckling. In this chapter the effect of equal and oppo-

site couples applied to the ends of a bar, to whose axis

the axes of the couples are to be parallel, is to be con-

sidered. Such couples twist the bar and the bar is

subjected to pure torsion.

The following discussions apply only to bars of cir-

cular section, the consideration of bars of other sections

being beyond the scope of this book.*

In Fig. 6 1 let AB represent an element of the cylin-

drical surface of the bar before twisting occurs, then

under the action of the couples shown each section of

the cylinder from P to is displaced angularly about the

axis OP relatively to the previous one by a differential

angle. These displacements accumulate and amount at

to the angle BOC called the angle of twist. The

element AB is at the same time distorted into the helix

AC, which is inclined to the axis OP at a constant angle

<t>,
called the angle of torsion.

* For such discussion see Elastizitat and Festigkeit, C. Bach, Berlin,

1905, pp. 302-357.

123



124 MECHANICS OF MATERIALS

The stress existing between two adjacent sections of

the bar is evidently one of shear and the angle <j> measures

the deformation or strain resulting from this shearing

A i I

P ''
'
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at x (removed to form the free body) will exert a force

on each and every element, pdpdd, of the section equal

to qpdpdO, where q is the unit shearing stress. This

force will be perpendicular to the radius, p, of the element

considered and must lie in the plane of the section.

Also the sum of the moments of these forces constitutes

the resisting torque at the section and must balance the

torque due to the £ouple at P. Thus if T represents the

torque of the couple applied at P or the equal moment of

the couple applied at 0, we have

T = ff(qPdpde) P , . . . . (1)

q is evidently a variable quantity, being zero at the

axis and increasing towards the surface, where it reaches

its greatest value. As the strain is assumed proportional

to the distance from the axis of the cylinder, the stress

may be considered to follow the same straight-line law,

and we may place

*-*?. 00

where qr is the shearing stress at the surface of the

cylinder, where the radius is r.

Substituting from (2) into (1), we have

T = ^ffPHpdedp).

The expression lip2 (pdddp) is by definition the polar

" moment of inertia " of the section, or, better, the

polar second moment of area. If this is designated by

Ip , we have

T _ qjp _ qi„

r p
pi

The analogy of this formula to M = — should be noted.
y
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Exercise 133. Show that the polar moment of inertia of

a circular section is<
2

Exercise 134. Compare the strength of a circular hol-

low shaft with that of a solid one having the same sectional

area. Let d\ and dz be the outside and inside diameters of

the hollow shaft.

Exercise 135. What is the ratio of the strength of the

hollow shaft to that of the solid one when di = 2 di ?

In order to find the angle of twist or the total strain

due to the torsion, the modulus of elasticity of shear

must be denned. Let the square in Fig. 63 represent

any element of the cylindrical surface of

"<t>
the bar before distortion, as represented

1 by the dotted lines at E in Fig. 61. Then

under the action of the shearing stresses,

m q, the displacement represented by the

—n—-^ " dotted lines in Fig. 63 occurs, and the

Fig. 63
angle of shear, 4>, measures this displace-

ment or strain; for the total strain be-

tween the two surfaces at a distance n from each other

is m, so that the strain between two surfaces at unit

distance from each other would be— 1 or the unit strain
n

is — = tan 4>, and as <t> is very small we may place

tan 4> = 4>.

<p is thus the unit strain, and analogously to *- = E we
s

put 5 = G>

where G is the modulus of elasticity of shear.

To obtain the angle of twist, consider a portion of the
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bar dx inches long (Fig. 64). Here AB represents the

helix and the angle of shear. The angle DEC (= 0)

is the twist in a length x and dp the increment in the

twist per increment, dx, of the length.

Now the arc BC = 4>dx = rd/3,

or

so that

dp=^, but
r

dp =

g
and q -

=
r;

Tdx

UG
and the total angle of twist, 6, in a bar J inches long is

= X f
l

dx = IL.
1fi Ja IVG

Exercise 136. A steel shaft 2§ inches in diameter carries

a pulley 30 inches in diameter; the difference in tensions on

the two parts of the belt is 2000 pounds. Find the greatest

unit shear and the angle of twist at a distance of 30 feet from

the pulley.

Exercise 137. Compare the stiffness of a hollow and a

solid shaft having the same sectional area and the same

length (see Ex. 134).
" Exercise 138. What is the ratio of the stiffness of the

hollow shaft to that of the solid one when d1 = 2 d2 ?
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Section XIV

j APPLICATIONS

Shaft Couplings. — Shafts are sometimes joined by

fastening two flanges, forming parts of the shafts to be

connected, by means of bolts, as shown in Fig. 65. Bolts

so used will be subject to shear whenever a torque is

transmitted from one shaft to the other.

[

L

a

Fig. 65

In order to find the number of bolts, if their diameter

is known, or their diameter, if the number of bolts is

given, which will make the couplings equal in strength

to the shafts,

let d be the diameter of the bolts,

D be the diameter of the shaft,

h be the distance between the center of shaft and the

centers of the bolts,

and n the number of bolts.

Then the resisting moment of the shaft,

qJP _ q^D3

r 16

should equal the resisting moment of the bolts,

n
' 32

2

(see Ex. 139),
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thus, we have D3 (d + 2 h) = nd2 (d2 + 8hi
). As an

approximation, when d is small as compared to h,

D3 = 4 *PA.

Show that this approximate solution may also be

obtained by considering the shearing stress in the bolts

of constant magnitude and uniformly distributed over

their sections.

Exercise 139. Show that the polar "moment of inertia"

of a section about arfaxis parallel to the polar axis through its

center of area equals its polar "moment of inertia" about the

polar axis through its center of area plus the product of the

area of the section by the square of the distance between

the axes.

Exercise 140. A hollow shaft, 17 inches outside and n
inches inside diameter, is to be coupled by 1 2 bolts placed on

a circle 40 inches in diameter. What should be the diameter

of the bolts?

Power Transmitted by Shafts. — Problems involving

the power transmitted by shafts of circular section are

easily solved if the following facts are remembered.

(a) Work in foot-pounds = (torque in pound-feet) X
(angular displacement in radians).

(b) T = ^>
r

where T is measured in inch-pounds.

Exercise 141. Show that if H is the H.P. to be trans-

mitted at n revolutions per minute, and qT is the working

strength of the material of the shaft for shearing stress,

then the diameter of the shaft in inches is

d=\/3 '
I

'

?0'
oooH
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Exercise 142. What H.P. can a cast-iron shaft 3 inches

in diameter transmit at 15 r.p.m. with a factor of safety of

Exercise 143. What should be the diameter of a struc-

tural steel shaft to safely transmit 500 H.P. at 200 r.p.m. ?

Exercise 144. Find the factor of safety for a wrought-

iron shaft 3 inches in diameter when transmitting 40 H.P. at

100 r.p.m.

Exercise 145. A steel wire 0.18 inch in diameter and

20 inches long is twisted through an angle of 18.5 degrees by

c. torque of 20 inch-pounds. Determine its shearing modulus

of elasticity.

Exercise 146. A steel shaft transmits 50 H.P. at 200

r.p.m. If its length is 20 feet and diameter 3 inches, through

what angle is this shaft twisted?

Exercise 147. 90 H.P. at 120 r.p.m. are to be transmitted

through a wrought-iron shaft. What must be the diameter

so that the angle of twist shall not exceed 1 degree in a

length of 8.5 feet?

What is the factor of safety under these conditions?



CHAPTER VII

STRESS, STRAIN, AND ELASTIC FAILURE

Section XV

STRESS

The object of this chapter is a general discussion of

stress and strain, and, in particular, a discussion of the

effect produced by the simultaneous occurrence of

several stresses.

Stress. — In all previous work only the stresses across

certain planes, more or less arbitrarily selected, were

considered. Thus, across a plane section perpendicular

to the axis of a bar in tension the stress was found to be

a normal stress, and across a plane section perpendicular

to the axis of a bar in torsion the stress was found to be

a tangential or shearing stress. In each of these cases

a single stress acted alone; in the first we have pure

normal stress, in the other pure shearing stress. It is,

however, apparent that very different results would

have been obtained had the sections been passed in

any direction other than perpendicular to the axis of

the bars. Under such conditions it is very likely that

both normal and shearing stresses would have been

found to act across the section, or, to state the case

different y, the actual stress across the section would have

been found to be oblique.

131
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In general it may readily be conceived that the stress

across any section taken at random within a stressed

material would be oblique to the section as shown in

Fig. 66, where the arrow 5 represents the stress across

the plane MN.
An oblique stress, S, can always be resolved into two

component stresses, p and q, the first normal, and the

second tangential to the plane MN. It is often con-

venient again to resolve q into the components q' and

Fig. 66

q" (both in the plane M N) in such a manner that p, q',

and q" shall each be parallel to one of the rectangular

axes to which the location of the plane MN is referred.

Conceive now a differential element, dx dy dz, in a

stressed body as represented in Fig. 67. Let the oblique

stresses across its various faces be resolved into com-

ponents parallel to the axes of reference, then the six

possible oblique stresses must be represented by the

eighteen normal and shearing stresses shown in Fig. 67.

The notation used in designating these numerous

stresses is as follows

:

Note first that a double subscript is employed. The
first of these subscripts always agrees with the name of

the axis to which the plane across which the stress

occurs is perpendicular; the second subscript always
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denotes the axis to which the stress is parallel. Thus

the stresses across face 3 have as first subscript x, for

their plane dydz is perpendicular to the X-axis (thus,

qx-, qx-, px~) ;
the second subscript indicating the axes

to which the stresses are parallel is now added (thus,

Ixy, <7«> pxx). In the case of the normal stress pxx , as

/ x U <lz.

dxdydz

P +

Fig. 67

there is no need of the second subscript, there being no

other px_, it is usually omitted, so that pxx is written px .

The reader should now write the names of the stresses

on faces 1 and 2 and compare his results with those in

Fig. 67.

Consider the stresses on the face 6. The normal

stress on this face is denoted by px . But as it acts at

a differential distance dx from face 3, this stress will

not in general be equal to the stress px on face 3, for it

may have changed by the partial differential of px with
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respect to x, (-^dx), and it should be denoted by px +

-^ dx. In the figure this added differential is denoted
dx

&

only by a plus sign. Similarly, qxz + denotes q„ +
^-z

dx, p v + denotes p v + {^Ady, qzy + denotes qzy +
dx \ayf

%*»&, etc.
dZ

As the scope of this text precludes the discussion of

the theory of stress in three dimensions, we shall use the

above notation and Fig. 67 simple to establish a funda-

mental theorem, namely:

Theorem I. The shearing stresses not only across

two mutually perpendicular planes but also perpen-

dicular to the intersection of these planes are always

equal in magnitude and both act either towards or away

from this intersection.

To prove this theorem, consider the differential ele-

ment of Fig. 67 as a free body, then as the body of which

it is a part is in equilibrium it must be in equilibrium

under the action of the forces on its faces due to the

stresses shown in the figure and such other distributed

forces as its weight, etc.

The forces due to the stresses may all be conceived

to act at the center of areas of the corresponding faces,

for on the differential surfaces forming these faces the

stresses may be assumed constant. For similar reasons

all forces such as weight, etc., may be assumed to be

concentrated at the center of volume of the element.

To avoid these latter forces in writing an equation ex-

pressing a condition of equilibrium of rotation (S Moment
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= o), let us use as axis of moments the line indicated

in Fig. 67, by pz and p, +. Noting also that we now
deal with forces and not with stresses, and that, there-

fore, pz, qzx, etc., must all be multiplied by the areas

of the faces upon which they act, so that forces may
be obtained, we have as the sum of the moments of all

forces about the selected'axis,

\qy,dxdsfi + \\qyx + y*dy)dxdz\®- \qxy dydz\^
2 (\ dy I ) 2 2

-\(qxy + ^dx)dydz\^ = o.

(\ ax I ) 2

Dividing by *-

—

> we obtain

<?„* + (qvx
+ d
-^dy) - qxy - (qxy +^dx) = o,

or q yx - qxy = o.

So that q,,,,
=

q^,,,

which proves our theorem.

Exercise 148. Show that qxz = qlx and that qyz = qzy .

Compare the above theorem with the results obtained

on page 67.

Two Dimensional Stresses. — To simplify the mathe-

matics and so more rapidly arrive at the results bearing

more directly on practical considerations, let us pass to

two-dimensional stress.

In Fig. 67, conceive no stresses to act across the planes

perpendicular to the Z-axis. Then all stresses across

plane 2 and 5 (i.e., p„ qzx , qzy and pz +, qzx +, qzy +)
reduce to zero. But by Theorem I, with qzx and qzy ,

qxz and q yz also become zero.
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The remaining stresses are shown in Fig. 68, or more

simply in two dimensions in Fig. 69, where the subscripts

Px
&\

t-lyx

1ux +
>-

W/J.

Fie 68

$ Px+

to q are omitted, for qx

needed.

qyx, and they are thus no longer

Exercise 149. Show that a rectangular parallelopiped,

a X b X c, with no stresses on the faces b X c, is in equi-

librium under the conditions of

stress shown in Fig. 69, when

the weight of the material is

neglected.

Given the stresses across

any two mutually perpendic-

ular planes at any point in a

stressed material, to deter-

mine the stresses across any

other plane at the same

point. This is the statement

of a fundamental problem in

To fully grasp this problem, con-
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passing through P. Then the most general condition of

stress across this plane, within the stressed material,

consists of a normal stress p v
and a shearing stress q, as

represented in Fig. 70 (b). Moreover, let the directions

of the stresses there shown be the positive directions;

so that a tensile normal stress shall

be positive, and a shearing stress ©P
which tends to move material on ^ y

the positive (upper) side of the

plane in a positive direction (toward

the right) shall be positive.

Imagine now a plane perpendic- Q>)

ular to the #-axis and passing

through P. The most general con-

dition of stress across this plane is

indicated, with due regard to signs, rc )

in Fig. 70 (c).

Finally, in Fig. 70 (d) the stresses

across any oblique plane are repre-

sented. The stresses there shown

are to be regarded as positive, id)

Any reversal of these stresses will

then be indicated by a negative sign

attached to either p' or q' at the conclusion of any

computation.

It is to be noted that as any and all stresses indicated

in Fig. 70 may vary from point to point within the

material, the areas of the surfaces indicated in this and

all similar figures must be regarded as infinitesimal.

Under this condition the stresses may be considered

constant over the surfaces considered, and the force due

to any stress may be found by multiplying the stress
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by the area of the surface across which it acts, and this

force may be regarded as concentrated at the center of

said area.

To establish the relations existing between the vari-

ous stresses shown in Fig. 70, make a free body of an

element of the material at the point P, this element to

be bounded by planes parallel to the planes shown in

Figs. 70 (b), (c), and (d), and two planes parallel to the

#y-plane a distance dz apart. This element is shown in

Fig. 71; note that only the

stresses acting on the element

must be used. The stresses

omitted in Fig. 71 but in-

dicated in Fig. 70 are the

.. stresses acting on the material

+ I ip I * * which had to be removed in

F order to make a free body of

the element considered.

In connection with Fig. 71 the problem to be solved

may now be restated as follows

:

Given the stresses px , p y , and q, also the angle a,

to find the stresses p' and q' in terms of the given quan-

tities.

As the body, of which the element represented in

Fig. 71 is a part, is assumed in equilibrium, the element

itself is in equilibrium, and we may write the

2 horizontal forces = o,

and the 2 vertical forces = o.

Thus we obtain

— (p' dx dz sec a) sin a — (q' dx dz sec a) cos a — (qdx dz)

+ (pdy dz) = o,
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and

+ (/>' dx dz sec a) cos a — (q' dx dz sec a) sin a + (qdy dz)

— (pydx dz) = o.

Placing dy = dx tan a and dividing by dx dz sec a, we
obtain

— p sin a — q' cos a — q cos a + px sina = o,

and ^' cos a — q' sina + qsina — p v cos a = o.

Eliminating q' £by multiplication by sin a and cos a

respectively, and subsequent subtraction), we obtain,

p' = px sin2 a -\- p y cos
2 a — 2 g sin a cos c.

The elimination of ^' gives

q' = {px — p y) sin a cos a + q(sin2a — cos2a).

Changing all functions of a in these equations to

functions of 2 a, we have

p
/ = EE+-P*_PiJZPi, C0S2a _ qshl2a) (A)

and

q' = ^ ^ sin 2 a — q cos 2 a (B)
2

Exercise 150. Obtain equations (A) and (B).

Exercise 151. A simple beam 2 inches by 10 inches,

span 14 feet, carries a uniform load of 60 pounds per foot run,

and a concentrated load of 200 pounds at mid-span. Find

the normal stress and the shearing stress at a point 3 inches

above the neutral axis and 3 feet from the left support across

a plane inclined at 22J degrees to the neutral surface. Sketch

the stresses across a horizontal and a vertical plane through

the above point and sketch the differential element bounded

by these planes and the oblique plane. Note that under the

assumption made in the study of beam stresses, normal

stresses across horizontal planes do not occur.
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It is seldom necessary to find the stresses across any

oblique plane as in Ex. 151. It is far more important

to determine the particular values of a, which locate the

planes across which p' and q' reach their maximum and

minimum values, and then determine these values. Again,

it is important to locate the planes across which normal

stresses alone act or across which shearing stresses alone

act, i.e., the planes of pure stress.

Principal Planes and Principal Stresses. — Principal

planes are the planes, passing through any given point

in a stressed material, across which normal stresses alone

act. Thus the principal planes are planes of zero shear

and planes of pure normal stress.

To obtain the inclination of the principal planes, as

referred to the assumed axes of x and y parallel to which

the stresses are known, Fig. 70 (a), (b), and (c), place

q' = o in equation (B),

whence tan 2 a = — * .... (C)

P* - P»
2

or 2 a = arc tan -*
1- rnr (n any integer),

P* ~~ Pv

and « = 2 arc tan — \-n -
px- p y 2

Thus the values of a which determine the directions

of the principal planes differ by - or 90 , or
2

Theorem II. The principal planes are mutually per-

pendicular.

Planes of Maximum and Minimum Normal Stress. —
To locate these planes it is necessary to determine the

values of a which will make p' as given in equation (A)

a maximum or a minimum.
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The derivative of

p> = P* + Pv _ P*~Pv
{cos 2 a — a sin 2 a,22 * 1

where px , p y ,
and q are constants, with respect to a, is

dp'
-f- = + (px — p v) sin 2 a — 2 q cos 2 a.

Placing this derivative equal to zero and solving for a,

we obtain •

tan 2 a _2_2_

P*-Pv
which is the same as equation (C) ; therefore,

Theorem III. The principal planes are also planes

of maximum or minimum normal stress.

Principal stresses are the normal stresses acting across

the principal planes. They are pure normal stresses,

for the shearing stresses on the principal planes are, by

definition, equal to zero.

The magnitude of the principal stresses is obtained by

substituting the value of a determined by equation (C)

into equation (A). From tan 2 a =——^— it follows that
P* ~ Pv

20
sin 2 a = -

V4 q*+(px -p y)

and cos 2 a = - '

v4q* + (px -p yy
whence the principal stresses as determined from equa

tion (A) are

pi= Pi+PJ, + I V4q2+ (pi _p B
)2

;

2 2

and

p2 = E^ " :V4 q*+(p,-p,)*.

(D)
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It should also be remembered that pi is the maximum
and that p2 is the minimum value of p' in equation (A).

d2p'
By substituting in —^ the various values of a deter-

mined by equation (C), the planes of maximum and

minimum normal stress are readily distinguished.

Exercise 152. Show, by substituting the value of a

determined by equation (C) in equation (B), that the

shearing stresses on the planes of maximum and minimum

normal stress are equal to zero.

Exercise 153. Find the principal stresses and the prin-

cipal planes at the point and in the beam described in

Ex. 151.

Sketch these planes and stresses.

Surfaces of Principal Stress. — In any stressed mate-

rial surfaces across which pure normal stresses act may
be traced. These surfaces may be divided into two sets;

across one set the stress will be tensile, across the other

it will be compressive. By reason of Theorem II, these

sets of surfaces will intersect at right angles.

As an illustration, trace the surfaces of principal

stress for a uniformly loaded simple beam, Fig. 72.

The normal stress across vertical planes is given by

My
the equation p = -y- and the normal stress across hori-

zontal planes is assumed to be zero. The shearing

stress across horizontal and vertical planes is given by

Assuming the axis of x horizontal, then in the notation

of equations (A)
;

(B), (C), and (D), px = p, p y
= o,
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and q = q; so that equation (C), determining the direc-

tions of the principal planes, becomes

tan 2u = —*•

P

Along the plane AB , Fig. 72, q = o, therefore

a = 0° or 90 ; evidently the planes inclined at 90 to

the axis of x are the planes of pure compression indicated

by heavy lines.

At A and B both q = o and p = o, therefore a is

indeterminate; p = o because on the section AD, M = o.

Similarly, along the plane DC the lightly drawn lines

indicate the planes of pure tension.

Along AD, p = o (for M = o) and g is zero only at

A and Z), therefore a = 45° or 135°. Here again the

heavy lines indicate compression planes and the light

lines tension planes.

Similarly, along BC, as shown in Fig. 72.

Along the section GH we have q = o (for Qx = o) and

p is zero only on NS. Hence the intersection of GH
and NS is an indeterminate point, while at other points

in the section a = 0° and 90 .
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Along NS, p = o, therefore a = 45° or 135 , as

shown.

Following the general directions obtained above, the

heavy lines indicate surfaces of pure compression and

the light lines indicate surfaces of pure tension.

As an application of these orthogonal cylindrical sur-

faces, attention is called to the steel reinforcements in

concrete beams. As is well known, concrete is strong

in compression but weak in tension; the reinforcement

is introduced to carry tension. The steel rod should

thus be normal to the surfaces of pure tension or they

should follow the surfaces of pure compression.

Exercise 154. Sketch an effective arrangement of rein-

forcement by means of straight rods for the beam shown

in Fig. 72. Why should no reinforcing rods be introduced

along the plane GH, Fig. 72 ?

Exercise 155. Sketch roughly the surfaces of maximum
and minimum shearing stress for the beam shown in Fig. 72.

Maximum Shear. — To investigate the conditions

leading to maximum shear, use equation (B), namely,

, px
— p v .

q = l- *-* sin 2 a — q cos 2 a,
2

whence rf~ = (px ~ Pv) cos 2 a + 2 q sin 2 a.
da

For maxima and minima conditions, place this equal to

zero and solve for a. Thus we find

tan 2 a = —

This is evidently the negative reciprocal of the value

of tan 2a as given in equation (C).
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And as angles whose tangents are negative reciprocals

differ by 90°, wc may state that the double of the angles

determining the principal planes differs from the double

of the angles determining the planes of maximum shear

by 90 . Therefore,

Theorem IV. The planes of maximum and minimum
shear bisect the angles between the principal planes.

Exercise 156. Compute the maximum and the minimum
shearing stresses.

Exercise 157. Compute the maximum and the minimum
normal stresses.

The maximum and minimum shearing stresses are

readily shown to be

q
'ETn
X=± * V4q2+(P*-P^ 2

• • • (
£)

Exercise 158. Find the normal stress on the planes of

maximum and minimum shear.

Note, from Ex. 158, that the normal stresses on the

planes of maximum and minimum shear are not zero,

so that these planes are not planes of pure shear.

Exercise 159. Find the values of the maximum and the

minimum shearing stresses and their planes for the point

described in Ex. 151.

Sketch these planes and stresses.

Pure Shear. — Planes across which the only stress is

a shearing stress are called planes of pure shear.

To arrive at the conditions leading to pure shear, p'

in equation (A), p. 139, must be placed equal to zero,

and the resulting equation solved for a. This value of
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a when substituted in equation (B) gives the shearing

stresses on the planes of pure shear.

Exercise 160. Solve equation (A) for a.

Instead of performing the operations indicated above

and thus locating the plane of pure shear with reference

to an arbitrarily selected axis of x, as shown in Figs. 70

and 71, it will be found more convenient first to locate

the principal planes by means of equation (C) and then

to locate the required planes with reference to these

principal planes.

After a has been determined by means of

tan 2 a = —

—

"—

»

P* ~ Pv

a new element, at the point considered, having its

bounding planes parallel to the directions determined

by a, may be isolated. The normal stresses on this

element, as indicated in Fig. 73, are found by means of

equations (D) ; the shearing stresses are zero.
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The stresses p" and q" across any plane inclined at an

angle a to the direction AB can be found by substitut-

ing pi for px , p2 for pV) o for q, and a for a in equations

(A) and (B), p. 139.

Thus p" = ^i^-2 - ^=^cos 2 a'
2 2

and q" =^^^sin 2 a'.
2

Exercise 161* Derive the above equations from an

element in equilibrium.

To find the angles a which will locate the planes of

pure shear with reference to the axis AB (Fig. 73), put

p" = o, whence

/ Pi "T" Pi
COS 2 a = 4 *-

)

pi — pi

which gives the required values.

A substitution of these values of a into the general

equation for q" yields

•"-^fV-fe^
Or q" = V- />!/>.,,

as the shear on the planes of pure shear.

This result calls attention to the fact that either

Pi or p2 must be negative so that q" may be real.

Or

Theorem V. Pure shear can only exist when one of

the principal stresses is a compressive and the other a

tensile stress.

As a special case, when the principal stresses are equal

tensions and compressions the pure shear occurs on

planes inclined at 45° and 135 to the principal planes,
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and the shearing stresses are then equal in magnitude

to the principal stresses.

Exercise 162. Prove the special case under Theorem V.

Exercise 163. If a given material is in pure shear, show

that pure compressive and tensile stresses (equal in magni-

tude to the shearing stress) act across planes inclined at

45° and 135° to the planes of pure shear.

The important facts stated in Theorem V and Ex. 163

can best be visualized as shown in Figs. 74 and 75. Here

all squares represent differential ele-

ments of the material at the point

considered; they are drawn of differ-

ent sizes simply for convenience of

representation.

In Fig. 74 the horizontal and ver-

tical planes are planes of pure shear;

the planes inclined at 45 to these

become planes of pure normal stress.

If the horizontal and vertical planes are planes of

pure normal stress, one a tension, the other an equal

compression, then the planes

inclined at 45 to these are

planes of pure shear, and the

shearing stresses are equal

in magnitude to the normal

stresses on the other planes.

As an illustration of this

state of stress, shafts in tor-

sion may be cited. The ma-
terial at the cylindrical surface of such shafts is in pure

shear across planes normal to the axis and across planes

passing through the axis of the shaft, as shown in Fig.
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76. But across planes passing through the intersection

of these planes and inclined to them at 45 the material

is in tension (along AB) and in compression (along CD).

If the shaft is composed of material weaker in tension

than in shear, the shaft fails, not in shear along DB,

Fig. 76

but in tension along AB. Apply torsion to a black-

board crayon and note the line of fracture along the

surface of the crayon, as an illustration of this fact.

Exercise 164. A steel shaft 2 inches in diameter trans-

mits 26 H.P. at 90 r.p.m. Find its factor of safety for shear

and for tensile stress.

Exercise 165. Investigate the general condition of a

material under the action of two equal tensile stresses at

right angles, and state your result in the form of a theorem.

Linear Stress. — If in Fig. 67 all stresses across

planes perpendicular to the y-axis as well as all stresses

across planes perpendicular to the z-axis are considered

equal to zero, then the only stress still acting is px .

Material under the action of a single normal stress is

said to be subject to a linear stress. A tension or com-

pression specimen under test is in linear stress.

Exercise 166. Show, by means of equations (A) and (B),

p. 139, that the maximum shearing stress in a material

under compressive linear stress acts across planes inclined

at 45 to the planes of pure compression and is equal in
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magnitude to one-half the compressive stress. Is this a pure

shear?

Exercise 167. A wrought-iron bar | of an inch by 4

inches is under a tension of 18,000 pounds. Find the max-

imum unit shear in the bar.

Exercise 168. A steel block 2 inches square and 3 inches

long is under a compression of 200,000 pounds. Find the

factor of safety for shear and for compression.

In compression tests on wood and brittle material,

such as stone and cast iron, failure occurs by shearing.

The angle between the plane of rupture and the axis

of the stress is, however, never 45 , but always less

than 45°.

In a tension test on a polished specimen of mild steel,

lines forming rough helices about the cylindrical surface

of the test piece are clearly visible after the yield point

has been reached. These lines, known as Luders' Lines,

are inclined at about 6o° to the axis of stress and indicate

molecular slip due to a shearing action.

The difference in location between the observed planes

of rupture and computed location of the planes of

maximum shearing stress (Ex. 166) may be accounted for

in some measure by the fact that the internal resistance

to sliding, due to the normal stresses and the cohesive

force of the molecules, has been neglected in these com-

putations.

Internal Resistance to Sliding. — In an element of a

material in tensile linear stress, as shown in Fig. 77, the

following relations are easily established from the con-

ditions of equilibrium:

p' = px sin
2 a,

q' = px sin a cos a.
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If now n is the coefficient of internal resistance to

slipping, and c is the normal cohesion per unit of area,

then when slipping along the plane of rupture is about to

occur we have

shearing stress _ px sin a cos a

normal pressure c — px sin2 a

for evidently the normal

stress, p' = px sin2 a, tends

to reduce the cohesive force

between the molecules.

The above equation when

solved for px yields

mc

Fig. 77

n sin2 a + sin a cos a

the tensile stress which will just overcome the internal

resistance along a plane inclined at an angle a to the

axis of stress.

Rupture will occur along a plane whose a is such as to

cause px to be a minimum or which causes

n sin2 a + sin a cos a

to become a maximum. This value of a is determined by

cot 2 a = — ix.

Exercise 169. Find the value of a for which rupture

occurs under compression. What relation does this angle

bear to the angle of rupture for tension ?

Exercise 170. In a compression test of cast iron the plane

of rupture was inclined at an angle of 35 to the axis of

stress. Compute fi.

Exercise 171. If the ultimate strength in compression

of the cast iron in Ex. 170 was 90,000 pounds per square inch,
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what was the cohesive force between the molecules in pounds

per square inch?

Exercise 172. Compute the probable tensile strength

of cast iron by the above formulas. Does this agree with the

average experimental results?

The result of Ex. 172 calls attention to the fact that

the above theory is by no means complete. Either c is

not the same for compression as for tension or other

considerations have been entirely neglected.

Ellipse of Stress. — Let pi and p2 be the principal

stresses at any point in a stressed material. Then from

equations (A) and (B), p. 139, if px, p v , and q are re-

placed by pi, pi, and zero, respectively, we obtain

p' = pi sin2 a + pi cos2 a,

and
<?' = (pi ~ P2) sm a cos a

,

where p' and q' now represent the normal and the shear-

ing stress, respectively, across any plane inclined at an

angle a to the direction of the stress pi.

The resultant (oblique) stress across this plane is thus

5' = Vp'2 + q'2 = Vp^sin2 a + p2 cos
2 a,

for the stresses S', p' , and q' are all distributed over the

same area.

Fig. 78 shows the directions of these stresses.

Exercise 173. Obtain the above results from the equi-

librium of any element of the material considered without

referring to equations previously obtained.

Exercise 174. Find the x and y components of the resul-

tant stress S' directly from the values of p' and q' in terms of

pi, p2, and a.



STRESS, STRAIN, AND ELASTIC FAILURE *53

The x and y components of S' as obtained from
Ex. 174 are pj = - pi sin a and p y

' = - p2 cos a.

If these values are considered as the x and y coordi-

nates of the end P of the vector S' representing the

resultant stress across the plane AB, Fig. 78, so that

x = — pi sin a and y = — p2 cos a,

we -" ®+($- sin2 a + cos2 a = 1.

Therefore, the locus of P for all inclinations of the

plane AB is an ellipse whose center is at the point at

which the stresses are considered and whose semi-axes

are equal in magnitude to and coincide in direction with

the principal stresses at this point.

From the above discussion a geometrical construc-

tion for obtaining the resultant stress on any plane

through any point, provided the principal stresses at

this point are known, is readily obtained.

Fig. 79 illustrates the construction.

Exercise 175. Show that the construction illustrated in

Fig. 79 gives S, the resultant stress on the plane AB in

direction and magnitude.
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Exercise 176. If one of the principal stresses, say pi,

parallel to the a-axis becomes negative, i.e., changes to a

compression, what change in Fig. 70 will this necessitate ?

Fig. 79

Section XVI

STRAIN

The changes in the form or the dimensions of a body

due to the action of external forces (or the stresses in-

duced by them) are usually called strains. Thus, strains

are the changes in the relative positions of points in a

given material due to the stresses within this material.

As already stated on p. 4, it is more convenient

to use the term strain in a narrower sense. The word

strain will be used to denote the change in the relative

position of two points originally at unit distance from

each other, or, what amounts to the same thing, the total

change in the relative position of any two points divided

by the unstrained distance between these points.
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This strain per unit length is sometimes called the

unit strain.

Strains Due to Normal Stresses. — Normal stress al-

ways produces a change in the linear dimensions of the

material. Whenever a single normal stress acts it pro-

duces a change not only in the dimension parallel to, but

also in all dimensions perpendicular to, the direction of

the stress.

In Fig. 80 a tensile stress, p, in the direction AB will

not only lengthen the dimension AB of the element, but
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(b) that for a given material and within the elastic

limit the ratio

lateral strain . -

: ;
—-

—

— is constant.
longitudinal strain

This ratio is called Poisson's Ratio and is usually

denoted by — Thus,
m

(lateral strain) = — (longitudinal strain)
m

when the strains are due to a single normal stress.

If two principal stresses act

simultaneously, then each pro-

duces both its longitudinal and

lateral strains. Thus if S\ rep-

resents the actual strain in the

direction AB (Fig. 81) and $2'

represents the actual strain in

the direction BC, while si rep-

resents the longitudinal strain in

the direction AB due to pi acting alone, and s2 is the

longitudinal strain due to pi acting alone, we have the

strain

-P, Px

J*
Fig. 81
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Exercise 177. If si, s2 , and s$ are the longitudinal strains

due to the three mutually perpendicular stresses, each act-

ing separately, find the actual strains in the directions of

the given stresses.

Strains Due to Shearing Stresses. — Shearing stresses

do not change the dimensions of the stressed material,

but change its form. Shearing

stresses will deform the square \ft _ >—-"'/]&

ABCD, Fig. 82, into the rhombus

A'B'C'D'. The relative change in

position of the points ABCD can

here best be expressed as the change

of the angle ADC {
= -radians ) to

\ 2 / Fig. 82

the angle A'D'C l = - — 4> radians
J

. This change in the

angle ADC, namely, <j> radians, is independent of the

linear dimensions of the element and may thus be re-

garded as a strain, the shearing strain.

Exercise 178. Show that as <j> is always a small angle,

the actual strain along the diagonals BD and AC in Fig. 82

.

is —
2

Note that although the edges of the element in pure

shear, in Fig. 82, do not change in length under this

shearing stress, the diagonals of this element do change

in length. This change in length is not due to the

shearing stress, but to the tensile and compressive

stresses equal in magnitude to the shearing stresses

which always accompany the shears (see Ex. 163).

Volumetric Strain.— Volumetric strain is the change

in volume due to hydrostatic stress divided by the un-

strained volume.
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Hydrostatic stress is a stress due to three equal

mutually perpendicular normal stresses. It derives its

name from the analogy to fluid pressure.

If x is the unstrained length of the edge of a cubical

element and this edge changes in length by Ax under

hydrostatic stress, then the volumetric strain is

x3 — (x — AaQ 3 _ + 3 x
2Ax — 3 x(Ax)

2 + (Ax)3

x3 xz

and as Ax is very small in comparison to x, the terms

involving (Ax) 2 and (Ax) 3 may be neglected; whence

the volumetric strain = "— •

x

The Relation between Stress and Strain. — It has

been demonstrated experimentally that the ratio of a

stress to the strain it produces is always constant for

a given material, provided the stress does not exceed

a certain limit called the elastic limit.

Thus:
Stress-—— = constant.
strain

The ratio of a stress to its strain is called a modulus

of elasticity.

Three Important Moduli of Elasticity.— Young's

Modulus of Elasticity, denoted by E, is the modulus for

pure normal stress in one direction only. It is found

experimentally by testing bars in tension or compression.

If p represents a stress in pounds per square inch within

the elastic limit of the material and 5 represents the

corresponding strain in inches per inch, then

E = - pounds per square inch.
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The value for E is practically the same for compres-

sive and tensile stresses.

The Modulus of Rigidity or the Shearing Modulus of

Elasticity, denoted by G, is the modulus for pure shear-

ing stress. If q represents a shearing stress in pounds

per square inch within the elastic limit of the material

and represents the corresponding strain in radians,

then

G =7 pounds per square inch.
9

The Bulk Modulus, denoted by K, is the modulus for

hydrostatic stress (resulting from three mutually per-

pendicular and equal normal stresses). If p represents

a hydrostatic stress in pounds per square inch within

the elastic limit of the material and x represents the

unstrained length of the edge of a cube to be submitted

to this stress, then the volumetric strain is
*— (see
x

page 158),

hydrostatic stress px
and K = -=*- ———— = —-— •

volumetric strain 3 Ax

Relations between the Elastic Constants

Relation between E, G, and As £ is the modulus
m

of pure normal stress in one direction only, and G is the

modulus of pure shear, they can only be compared when

the material considered is under both pure normal stress

and pure shear across different planes.

Rereading of Theorem V, page 147, will show that these

conditions are satisfied whenever the material is under

equal tensile and compressive stresses across mutually

perpendicular planes.
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Fig. 83 represents an element under these conditions.

Let x be the original unstrained length of the edges of

this element. Then as the material is considered iso-

p

B
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or
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working stress being the ultimate strength divided by a

suitable factor of safety (see page 10). This method

does very well when only one stress (shearing or normal)

occurs on the material considered.

If, however, two principal stresses occur simultane-

ously at any point in the material, it may well be

questioned whether the effect of the greater of these

principal stresses should be considered alone or whether

the combined effect of all the principal stresses is the

cause of elastic failure.*

We shall consider only three theories as to the manner

in which failure may occur.

Elastic failure may occur according to

theory I, for a given value of the greatest principal stress,

theory II, for a given value of the maximum shear,

theory III, for a given value of the greatest actual strain.

According to theory I, the principal stresses at the

point in the material under investigation should be

determined by equations (D), page 141. These are pure

normal stresses, so that shear need not be considered.

The greater of these principal stresses should then be

less than the safe working stress of the material for ten-

sion or compression, as the case may be, in order that

the structure may be safe.

Note that under this theory the effect of the lesser

principal stress is neglected, the material being con-

sidered as under the action of one normal stress only.

For this reason this theory is hardly complete, although

* For further information on this subject consult C. Bach, "Elastizi-

tat und Festigkeit," Fiinfte Auflage, 1905, pp. 424-428; A. Foppl,

"Technische Mechanik," 1907, Fiinfter Band, p. 19; also papers by

J. J. Guest, Phil., May, July, 1900, and Mohr, Zeitschr. d. V. D. Ing.

1900, s. 1524-



STRESS, STRAIN, AND ELASTIC FAILURE 163

when used with a factor of safety varying with the

conditions of the compound stress it has given satis-

factory results.

Theory II calls for the use of the maximum shear as

the determining factor for elastic failure. This theory

has been demonstrated experimentally for ductile

materials, especially mild steel. Under this theory the

maximum shear, as computed from equation (E),

page 145, shotfid remain less than the safe working

stress for shear for the material considered, in order to

insure a safe structure.

Theory III assumes elastic failure under the greatest

actual strain. That is, it considers the failure to occur

not as the result of a certain stress in pounds per square

inch, but as the result of a certain strain in inches per

inch. In this manner it is possible to take into account

the effect of both principal stresses.

If the material is under the action of two principal

stresses pi and p2 (Fig. 81), then the actual strains are

/
s2

Si = Si >

m
in the direction of the stress pi,

and $2 = s2 >m
in the direction of the stress p2 (see page 156).

Here Si = ~ and s2 = *£ , for these are the longitu-
E hi

dinal stresses due to pi and p2 respectively; so that

pi 1P2
E m E

and s2
=

I? 77E m E

1 = h _ 1h
1 E mE
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are the actual strains in the directions of the principal

stresses.

It is inconvenient to deal with strains, therefore these

strains are reduced to equivalent simple stresses.

An equivalent simple stress is a stress which, acting

alone and in the direction of one of the principal stresses,

would produce the actual strain in this direction.

As p = sE for simple stresses, the equivalent simple

stresses are

i

lP« = Pi - — P2m

and 2pc
= p2 Pi-m

Note again that here 2pe acting alone in the direction

of pi will produce the strain in this direction due to

both of the principal stresses px and p2 acting together.

Exercise 184. Under what conditions will an equivalent

simple stress be (a) greater, (b) less than the greater of the

principal stresses which it replaces ?

Exercise 185. In a boiler plate the tension across a plane

perpendicular to the axis of the shell is 5000 pounds per

square inch, and across a plane through the axis of the shell

the tension is 10,000 pounds per square inch. Find the

greater of the equivalent simple stresses if Poisson's Ratio

is J.

Exercise 186. Find the three equivalent simple stresses

replacing two pure tensions pi and p2 across mutually per-

pendicular planes and a pure compression p 3 across a plane

perpendicular to both the other planes.

Elastic Failure in Beams. — In beams, under the

assumptions that plane sections normal to the axis of
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the beam remain plane sections, that the horizontal

fibers act independently of each other and follow

Hooke's Law, and finally, that no normal stresses are

transmitted across horizontal planes, the points under

the action of compound stresses need not be investi-

gated; for the greatest tensile stress occurs on the

extreme upper fibers, and the greatest compressive stress

occurs on the extreme lower fibers or vice versa. In all

cases the shear along these fibers is zero. Again, the shear

reaches its maximum values along the neutral surface.

Here again the normal stresses are zero.

In general, however, the material of the beam is

under both normal stress and shear, but neither of these

stresses is at its greatest value.

Thus the discussion concerning the strength of beams

as already given may be considered as sufficiently exten-

sive to cover all cases.



CHAPTER VIII

COMPOUND STRESSES

Section XVIII

COMBINED TORSION AND BENDING

When bending and torsion occur together some points

in the stressed material are under compound stresses.

At such points normal stresses and shearing stresses

occur simultaneously. This is true not only at some

Fig. 84

points, but even at the points in the material at which

the greatest stresses occur. So that in material under

combined torsion and bending the effect of these com-

pound stresses must be considered.

Fig. 84 illustrates a cylindrical bar, subjected to both

the twisting action of a couple, whose moment is T, and

the bending action of the force W. T produces a pure

shear across all planes normal to the axis of the bar.

166



COMPOUND STRESSES 167

lb



168 MECHANICS OF MATERIALS

The principal stresses at the dangerous point must

now be found by means of equations (D) (page 141).

Thus pi = i{pb + V4 q? + p>\,

and Pt=k\pb- ^4q? + pb
2

\
•

If elastic failure is assumed to occur under theory I

(page 162), then the greater of these stresses is the dan-

gerous stress.

Equation (E) (page 145) gives as greatest shear at

the dangerous point

?'
max =±f V4^ + ^.

« mm

This according to theory II of elastic failure is the

dangerous stress.

Finally, if theory III is followed, the actual strains in

the direction of the principal stresses are

1 E mE

and **= Pi- L %E m E

or, what is more convenient, the corresponding equivalent

simple stresses are

ipf =Pi- L
p2 = l (i- L

)pi + l (i + 1)v^qJTh2
,m 2 \ ml 2 \ ml

and

*P< =p2- 1
pi = l (i - -)pb - -fi + -)v4 q*+ pb\m 2 \ ml 2 V ml

According to this theory the greater of these equivalent

simple stresses is the dangerous stress in the bar.

The Cranked Shaft. — In Fig. 87 the vertical force P
is applied to the crank pin at a distance di from the axis
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of the shaft. The crank is here shown in a horizontal

plane. Let B represent the bearing and let a\ be the

distance from a plane through P and normal to the

axis of the shaft to the outer edge of the bearing. Then

by introducing the two dotted forces equal to P the

problem remains unchanged, but the marked ( = ) forces

evidently form the couple which exerts a twisting mo-

t

&*<*
dj- V

IP

Fig. 87

ment T = Pd\ upon the shaft and the remaining (dotted)

force P is the force causing the bending moment M =

Pdi in the shaft at B.

Exercise 188. Show that the principal stresses in the

shaft, Fig. 87, at the dangerous point are

—JM±VT2 + M2
|.

TTl"

Exercise 189. Show that the greatest shear at the danger-

ous point in the shaft, Fig. 87, is

tt°
VT2+M2

.

Exercise 190. Show that the equivalent simple stresses

at the dangerous point in the shaft, Fig. 87, are

1

2

S(
I -s)M± (

I + m)
VT2+M2
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and that these reduce to

^ j
.7 M ± 1.3 VT2 + M2

j

»

1
if — = .3, the value for steel and wrought iron.m

Exercise 191. A steel shaft 5 inches in diameter is driven

by a crank 1 2 inches long, and the center of the crank pin

is 11 inches from the plane of the outer edge of the journal.

The thrust on the crank pin normal to the plane of the crank

and shaft is 10 tons. Find (a) the greatest shear, neglecting

the bending; (b) the greatest normal stress, neglecting the

twisting; (c) the principal stresses at the dangerous point;

(d) the greatest shear at the dangerous point; (e) the

equivalent simple stresses at the dangerous point.

Section XIX

ENVELOPES

In this section will be considered the stresses in hollow

cylinders and spheres subject to fluid pressure. The

weight of the fluid and the weight of the envelopes will

be neglected.

When the thickness of the metal of the envelope is

small compared to its other dimensions, the envelope is

usually called a shell.

Cylindrical Shells under Internal Fluid Pressure. —
Cylindrical shells subjected to internal fluid pressure, and

so long that the pressure on the ends may be assumed to

exert no stress on the shell, or better, cylindrical shells

fitted with pistons at both ends, so arranged as to take

up the end pressures independently of the shell, will

first be considered. In such shells no stresses exist
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across planes perpendicular to their axes. The normal

stresses across planes through the axes may be assumed

uniformly distributed.

In Fig. 88 a quarter of a

hoop of such a shell is shown as

a free body. The only forces

acting upon this portion of the

hoop are those due to the hoop

stresses, ph , on the surfaces

AB and CD, and those due to

the internal fluid pressure w on

the internal cylindrical surface.

As this portion of the shell

is in equilibrium under the

action of these forces, we may
equate the sum of their ver-

tical components to zero.

Thus, if t represents the

thickness of the material, r the internal radius of the

shell, and w is the fluid pressure in pounds per square

inch,

we have

Fig.

2 (wxrdd) cos 6 — phxt

whence

and
xtph wxr.

P* = —wr
t

This is the hoop tension in pounds per square inch.

In this discussion the compression in the material of

the shell, which is due to w and gradually diminishes from
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w at the inner surface to zero at the outer surface, has

been neglected (see page 176).

Exercise 192. Sketch as a free body a portion of the

cylindrical shell whose dimensions are t, x, and rdd. From
it deduce the hoop tension.

Exercise 193. What water pressure will a cast-iron pipe

36 inches in diameter and ifV inches thick withstand with

a factor of safety of 15 ?

Exercise 194. A wrought-iron pipe 20 inches in diameter

is to convey water under a head of 400 feet. If the factor

of safety is to be 10, what should be its thickness?

Exercise 195. A boiler 72 inches in diameter, of steel

whose ultimate tensile strength is 60,000 pounds per square

inch, is to carry 150 pounds per square inch. The efficiency

of the riveted joints is 80 % and the factor of safety should

be 5. What should be the thickness of the plates?

Exercise 196. A cylinder to hold compressed air at

2000 pounds per square inch has a diameter of 7 inches, and

the thickness of the metal is 0.35 inch. What is the work-

ing stress in the shell ?

If the whole fluid pressure on the material closing the

ends of a cylindrical shell is sustained by the shell (no

stays passing from end to end parallel to the axis being

introduced), a stress across planes perpendicular to the

axis is produced in the shell. If the internal radius of

the shell is r, the total tension due to an internal pressure

of w pounds per square inch will be wwr2 pounds. This

force, if uniformly distributed over the area of material

cut by a plane normal to the axis, which is nearly 2wrt

square inches, will produce a longitudinal tension, ph

in the shell. Hence

p* = — pounds per square inch.
2 t
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This longitudinal tension is one-half of the hoop
tension. This accounts for the double riveting of

longitudinal joints and the single riveting of circumfer-

ential joints in shells bujlt up of plates.

When the material of the shell is in both longitudinal

and hoop stress, then these are the principal stresses in

the material.

According to theory I of elastic failure (see page 162),

the dangerous stress would be the fioop stress ph .

As there can exist no shear in this case (see page 147),

theory II cannot be applied. Finally, according to

theory III, the greatest strain produced in the material

of the shell is sh
' = & - — &, and this determines theE m E

dangerous equivalent simple stress

Pe = Ph Pi =2 —-
m \ ml 2t

If the material is wrought iron or steel when— = .3,m
we have pe

= .83—
Exercise 197. Find the other equivalent simple stress

for the above shell.

Exercise 198. A tank is 8 feet in diameter and 16 feet

long. If the shell is 1 inch thick, find the hoop stress,

the longitudinal stress, and the equivalent simple stress for

an internal pressure of 160 pounds per square inch.

Exercise 199. The cast-iron air chamber of a pump is

of cylindrical form with hemispherical ends. If the diameter

is 10 inches and the length of the cylindrical part is 24 inches,

what pressure can it withstand with a factor of safety of 5,

the wall thickness being 0.5 inch?
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Spherical Shells under Internal Pressure. — Let r be

the internal radius of the shell, t the thickness of the wall,

w the internal fluid pressure, p the stress across any

plane passing through the center of the shell. Then

Fig. 89

from the equilibrium of the octant of the shell shown in

Fig. 89 we have the sum of the vertical forces

wr2 sin <j> cos <t>d<t> f
dd — — = o.

For
2 irrh

is approximately the area over which the

vertical stress p is assumed uniformly distributed, and

the differential area upon which w acts is (rd(t>) (r sin <j>dd).

Thus

wr
p=
Vt'



COMPOUND STRESSES 1 75

This, according to the first theory of elastic failure

(page 162), is the dangerous stress, while according to

the third theory the equivalent simple stress is

\ ml

wr—
j

2t

or as — = .3 for wrought iron and steelm
wr

Pe = -35T--
• *

Exercise 200. Sketch an element of the above shell as a

free body and deduce the above value of pe .

Exercise 201. A force of 500 pounds applied to the

plunger of a force pump is transferred to a hollow cast-iron

sphere 10 inches in internal diameter. What should be the

thickness of the shell if the plunger is 1 inch in diameter

and the factor of safety is to be 6 ?

Cylindrical Shells under External Pressure. — The

case of cylindrical shells under external pressure is

analogous to the case of a bar in compression. If the

shell is perfectly circular and of homogeneous material,

its condition is similar to that of Euler's ideal column.

As theoretical discussions of this case are complicated

and lead to unsatisfactory results, they will not be at-

tempted. Instead empirical formulas devised by R. T.

Stewart (Trans. A. S. M. E., Vol. XXVII, 1906, page 730)

will be quoted.

According to Stewart, for lap-welded Bessemer steel

tubes

w = 1000

1

and

V—*»©'•
• •

• (A)

w = 86670 Q) - 1386 . . . . (B)
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where (A) is to be used when w < 581 or - < .023 and
a

(B) is to be used for values greater than these,

and w = the collapsing pressure in pounds per square

inch,

d = the outside diameter of the tube in inches,

t = the thickness of the wall in inches.

Exercise 202. What should be the thickness of the wall

of a 4-inch boiler tube in order that it may withstand a

working pressure of 200 pounds per square inch with a factor

of safety of 6?

Exercise 203. In a fire tube boiler the tubes are of steel

2 inches in external diameter and f inch thick. Find the

factor of safety when the pressure is 200 pounds per square

inch.

Hollow Cylinders with Thick Walls, Lame's Equa-

tions. — In cylindrical envelopes with thick walls the

hoop stress cannot be assumed as uniformly distributed

across planes passing through the axis of the cylindrical

surfaces. Nor can the radial stress across cylindrical

surfaces within the material, having the

same axis as the boundary surfaces, be

neglected, as in the above treatment of

shells.

Fig. 90 represents an element of the en-

velope, referred to cylindrical coordinates.

Let p r denote the radial stress at a

radius r, and ph hoop stress at the same

point of the material. Then if we neglect

the longitudinal stress due to pressure on the material

closing the ends of the envelope, there will be no stress

across planes normal to the axis of the cylindrical sur-
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faces, and Fig. 91 may be used to represent the element
as a free body.

The sum of the radial forces acting upon this element

must be zero, or

-pT rdddx + (p r + dpr) (r + dr) dedx - ph drdxsin —
2

— (ph + dph) dr dx sin— = 0.
,

2

. . de de _ . „As sin — = — , ft follows that
2 2

r dpr + pr dr - ph dr = o,

f+-Pr = h* (I)
dr r r

This equation involves three variables, p r , pk , and r.

Another equation is therefore required.

Exercise 204. What result is obtained by equating the

sum of the tangential forces acting

on the element, Fig. 91, to zero?
A Pr* dP r

To obtain another equation in-

volving p r and pk ,
Lame assumed .&•—""V

that plane sections perpendicular Ph+dph

to the axis of the envelope before

the envelope was strained re- ^\ /

mained planes after distortion by ^

the fluid pressure. This means

that the actual strain parallel to the axis must be con-

stant throughout the material. So that

*~£ ^ = a constant,
m E m h

or . pT + ph = k, a constant (2)
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Substituting the value of ph from (2) into (1), we have

f+
2

-Pr= l k.
dr r r

Integrating this equation either by separation of the

variables or as a linear differential equation, we obta n

>, =Mf
. (3)

2 r

where c is the constant of integration.

By reason of (2) we also have

a=M <>
2 r

Assume now

w { , as the internal fluid pressure,

w
f , the external fluid pressure,

a, the external radius of the envelope,

and b, the internal radius of the envelope.

Then the constants k and c can be determined from

equation (3) by noting that

when r = a, p r
= — we ,

and when r = b, p r
= — w { .

The negative signs indicate that the radial stresses are

compressive at the outer and inner surfaces.

The above conditions substituted in (3) yield

k . c- V>i = ~ + 7i
2

2

and - w€
= - + -

Solving these equations for k and c, we obtain

_ 2 (b2Wj - <z
2w6) , _ (we

- w
%) a

k -~
a2 _ b2

anCl C -
ffl
2 _

ft
2
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.

,

. bhiVi — dhv. a2b2 (w< — wf )So that, p r
=—

I
—« - v

f ,

a2 — b2 (a2 — b2) r
2

_ b2
uij — a?we a?b2 {w t

— w.)
Ph ~

a2 -b2 +
(a2 -b2)r2

These are Lame's formulas for the radial and the hoop

stresses in thick hollow cylinders under both external

and internal fluid pressures.

Exercise 205.* Find the hoop stress in the material of a

hollow cylinder at 10, 13, 17, and 20 inches from the center.

The external and internal radii of the envelope are 20 inches

and 10 inches, while the only pressure is an internal fluid

pressure of 2000 pounds per square inch.

Exercise 206. In Lame's equation for the hoop stress,

put a = b + t, where /, the thickness of the shell, is small

compared to b, and show that ph = —— gives the value
t

of the hoop stress at the dangerous surface when the external

pressure is zero. How does this result compare with the

result obtained on page 171?

Exercise 207. What is the approximate value of ph at

the outer surface of the shell described in Ex. 206 ?

Exercise 208. What are the values of the radial stresses

at the outer and inner surfaces of a shell under internal

pressure only as obtained from Lame's equations?

Exercise 209. From Lame's equations find a in terms of

b, ph , r, and Wi, assuming w
e
= o. From this result show

that the internal fluid pressure can never exceed with safety

the working stress of the material, provided elastic failure

is assumed to be due to the greatest normal stress acting in

the material.

Exercise 210. Find the greatest equivalent simple stress

at the dangerous surface in a thick cylindrical envelope

under internal pressure.
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Exercise 211. Solve Ex. 194 by means of th formula

developed in Ex. 210, and compare with the previous

result.

Exercise 212. What pressure will a steel locomotive

cylinder 22 inches in internal diameter and having walls

; inch thick withstand with a factor of safety of 10?

Exercise 213. Deduce from Lame's equations the great-

est equivalent simple stress at the dangerous point in a

cylinder subjected to external pressure only.

Exercise 214. If the pressure on the material closing

the ends of a cylindrical envelope is sustained by the envelope,

show that the longitudinal tension is

Wib2 — w,a2

Pi
b2

Under these conditions show that the equivalent simple

hoop stress is

_ b2Wi — a?we 4 a2b2 (w, — wt)

p€ ~
3 (a2 - b2) 3 r2 (a2 - b2) '

when m = 3.

This formula is known as Clavarino's formula.



CHAPTER IX

THE PRINCIPLE OF WORK AS USED IN COM-
PUTING DEFLECTIONS

Section XX
DEFLECTIONS DUE TO BENDING

Whenever a body is strained work is done against the

internal elastic forces (stresses) set up within the material.

The energy stored in the material, provided the stresses

do not exceed the elastic limit, is called the resilience of

the material. Resilience is thus used to denote the

internal work done upon the material in straining it.

This is in distinction to the external work, the work

performed by the external or applied forces acting upon

the material and causing the strain.

Resilience of a Bent Beam, Neglecting Shear. — If we

assumed the material of the beam to be under normal

stresses only, the work done against these stresses in

bending the beam can be computed as follows

:

Consider a slice cut from the beam by two planes

perpendicular to the axis and dx apart, as shown by the

dotted lines in Fig. 92. Then after the beam is fully

loaded the bending moments Mx and Mx + dMx will

act upon the plane's of section and the slice of the beam

will be distorted to the shape shown by the solid lines

in Fig. 92.

181
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To avoid vibrations, the loading will be assumed to be

gradually applied, so that the bending moments gradually

increase from zero to the

values Mx and Mx + dMx

as the distortion of the

slice progresses.

Let dd represent the total

relative angular displace-

ment of the planes of sec-

tion; then dd is also the

change in the angle which

the tangent to the elastic

curve makes with the x-axis

in passing from the points

determined by x and x+ dx.

The plane sections may then be assumed to be displaced

through the angles add and [idd as shown in Fig. 92,

where a + /? = 1.

As work done equals the product of the moment by

the angular displacement, and as the average bending

Mx Mx + dM.xmoments acting upon the element are — >
»

we have as the work done upon the elementary slice of

the beam against the internal elastic forces

M,, ,.x .
/Mx + dMx\ /nl „, Mx M

;

(« + 0) <** = —<**
2

Mx , ,„s , IMX + dMx\, n ,„,

-^ (ode) + (—^

—

-) (Pde) =

But dd, the change in angle, is approximately equal to

the change of slope of the elastic curve in the distance

dx, or, expressed mathematically,
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for we assume that the beam, originally straight, deflects

but slightly.

Thus, the resilience of the whole beam is

'M'dx
S'Mf^-lP EI

where the integration must extend throughout the whole

length of the beam.

Exercise 215. Compute the resilience of a cantilever

loaded only at the free end.

In computing the resilience of beams in which the

integration must be carried on in several intervals, the

selection of a new origin of coordinates for each interval

often simplifies the algebraical work.

To illustrate, let us compute the resilience of a simple

beam loaded only at mid-span.

In the first solution select 0, Fig. 93, as origin for the

K-
1

1

K

—

x-

°k

W

%

I

I

I

I

Fig. 93

work in both intervals. Then assuming the beam of

constant cross section so that / is constant, we have

1

2

~ 2EII96 06J 96 El'
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In this, the second solution, consider the origin for

the left-hand interval at A and for the right-hand inter-

val at B, Fig. 94. Then the

Resilience
1 f2 /Wx\2

,

1

ElJn

2 EI f!(
Wx\2

dx

W2
x?
dx = W2

l
3

96 El'

w

rZ— X- «-«->!

Fig. 94

Exercise 216. Compute the resilience of a uniformly

loaded simple beam.

Exercise 217. Compute the resilience of a uniformly

loaded simple beam bearing a concentrated load at mid-

span.

Exercise 218. Why cannot the result of Ex. 217 be

obtained by adding the resiliences due to each load sepa-

rately ?

Explain and compute the difference in these results.

Deflection under a Single Concentrated Load. — The
gradual increase of the loading on a beam will cause a

gradual increase in the strain (and in the stress) within

the material of the beam. Under these conditions no

degradation of the potential energy lost by the load as

the beam deflects occurs; the whole of this energy is

stored in the stressed material, always provided that

the stresses within the material do not exceed its elastic

limit.
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Thus, the external work done by the external or

applied forces equals the resilience of, or the internal

work stored in, the material of the beam.

When a single concentrated load is gradually applied

to a beam, the external work can readily be computed

in terms of the load and the resulting deflection under

the load. By equating this decrease in the potential

energy of the load to the resilience due to the gradually

applied load, the magnitude of the deflection can be

found.

To illustrate, let us compute the deflection at the end

of a cantilever loaded at the end only

I:

i I

w

Fig. 95

From Fig. 95, assuming S as the deflection under the

W8
load, we have the external work =

and the resilience

Whence

and

-mf.™
6 El'

dx

W5
2

5 =

W2P

6 EI
Wl3

3 El'

Exercise 219. Find the deflection at mid-span of a

simple beam loaded at mid-span.
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Exercise 220. Find the deflection under the load for a

simple beam, span /, loaded at a distance a from the left

support with W pounds.

Deflection at Any Point under Any Loading. — From

the preceding exercises it is evident that it is impossible

to apply the method there used to beams loaded with

more than one concentrated load, or even to finding the

deflection at any point other than the one directly

under the load, in a beam bearing only one concentrated

load; for under these conditions 1 the external work

cannot be computed without involving unknown deflec-

tions other than the one sought.

To obtain a general formula for computing deflections

by means of the principle of work, we may proceed as

follows

:

Consider a perfectly general loading, as shown in

Fig. 96, and let the deflection S under the load L be

w. w 8 Wn

Fig. 96

required. For convenience of demonstration this L is

singled out and specially designated, while all other load-

ing will be referred to as W's.

It is then evident that the external work due to L only,

all loads being gradually applied, will equal

'8,
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where 5 is the deflection under L due to all the loads

including L and not the deflection due to L only.

If we can now compute the resilience or internal work
due to L only, 5 can be found.

Referring to Fig. 92, the internal work done upon an
elementary slice of any beam is

;(Jf,)(rffl)=i(ilO(f*dx),

or \ (bending moment at any section) (change in slope

at that section).

If the total bending moment and the total change in

slope are used, the internal work due to all loads is

obtained. If, however, the bending moment, due to the

load L only, and the total change in slope, due to all

loads including L, are used, the result will be the internal

work due to L only.

The last statement may be more readily understood

from the following analysis:

Let LMX represent the bending moment at any sec-

tion due to the load L only and nMx that due to Wn only,

etc.

Consider the beam unloaded and the load L to be grad-

ually applied, then the resilience per element due to this

1 (
LMX \

load is -
(

LMX) {-=jdx\. The load L remaining on the

beam, apply W\ gradually; then the additional resilience

per element due to the additional displacement of the

load L is -
(
LMX) \.-~dx\, for the bending moment due

to L remains LMX and the additional change in slope is

due to the bending moment due to W\, i.e.,l-=jdxj.
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Thus the resilience per element due to the load L
when both L and W\ are on the beam is

l
hMx + lMx-;w (- '-dx

2
V " \ EI

and the resilience per element for any loading whatso-

ever due to L only must be

[

LMX + g mM*

±(?MX)\ ff dx),
2 \ El

as stated above.

Now the external work due to L only must equal the

resilience due, to L only, or

LMX +^MX

eT
— dx

J-

But LMX , the bending moment at any section due to

L only, is a function of x, so that we may write

LMx = Lf(x).

Exercise 221. If L is applied to a simple beam, span I

feet, at nl feet from the left abutment, find LMX for any point

in the span and indicate the value of/ (x).

So that,

Lf(x)+^ mMx

- I Lf(x)
Lh 1 ,

2 2

m= 1

EI
dx.

and

/
Lf(x) + X mMx

« = ./ ^—/(*)<**, •
• (1)



THE PRINCIPLE OF WORK 189

where the integration must extend throughout the length

of the beam.

To obtain/ (a;), use its denning equation LMX = LJ(x),

whence / (x) = ——

Note also (Ex. 221) that the value of f(x) is independ-

ent of L, so that L may be assumed equal to unity as

far as finding /(«) is concerned. Thus,

f(x) = 1MX .

That is, f (x) is numerically equal to the bending mo-
ment at any section of the beam due to a hypothetical

load of one pound placed at the section whose deflec-

tion is required.

Return now to equation (1) for S. This equation as

it stands requires an actual load L on the beam at the

point at which the deflection is sought. Such a load is

evidently not always present. We have already shown

that the/(x) is independent of L; that is, it may be found

by using a hypothetical load of one pound at the point

whose deflection is sought. This hypothetical load

should in no way be conceived as an actual load upon the

beam producing an additional deflection. Its only

purpose is the convenient determination oif(x). Thus

there is no reason why equation (1) should not hold for

any value of L including the zero value. So that in

order to obtain a general equation, giving the deflection

at any point, loaded or unloaded, place L, in equation (1),

equal to zero, whence

-M,f(x),

-r- EI
**
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where Mx is the bending moment at any section of the

beam due to all the loads upon the beam and f (x) is

numerically equal to the bending moment at any sec-

tion due to a hypothetical one-pound load placed at the

point at which the deflection 5 is sought, the integration

to cover the whole length of the beam.

As an application of this formula, let us find the deflec-

tion at the right-hand end of the uniformly loaded beam

illustrated in Fig. 97. Here the integration must be

!<»> *(««} !

(1 >

*
\ /w I

-I f =3=
k-a

<
1 -4<—«Z—

>{

tfKi-re») lirfO+n) 2 '

2 2

Fig. 97

performed in two stages, there being two intervals in

which the values of both Mx and / (x) are expressed by

different functions of x.

Let us use the left end of the left interval as its origin

and the right end of the right interval as its origin.

Great care must be taken not to confuse the effect of

the hypothetical one-pound load with that of the actual

loading on the beam. Find the reactions for each sepa-

rately. These reactions are indicated in Fig. 97. All

hypothetical forces are indicated by dotted lines.

Thus, in the two intervals we have

, , wl (1 — n2
) wx2

, r wx2

Mx = — -x ; Mx = —>222
and

/(*) = — nx; f(x) = x.
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Note carefully the signs of the moment (see page 26).

So that,

l(wl (1 — «2
) wx2

) .
, ,

-x > — nx
I
ax

2 2 )
ElJ

j_T_ wnl (1 — n2
) x3 wnxi

'Y
,

j_rwx^] nl

~ Ell 6
+

8 Jo £/|_8 Jo

writ*
(3#3 + 4W2 - 1).

24 EI

As another application let us find the equation of the

elastic curve of a cantilever beam loaded at the free end

only. This problem is solved by finding the deflection

b at any point, at a distance a from the wall, Fig. 98.

ft
a—

-x *i

(l)

£6

W

J"

Fig. 98

Here, on account of the hypothetical one pound, two

intervals must again be considered.

We have,

M. = W(l-x); Mx = W(l- x),

also / (x) = (1) (a — x); f (x) = o.

So that,

b = -±- PV (I - x) (a - x) dx + fw (I - x) (o) dx,
EI <J n •'a

(3 1 ~ a).

EI«o

whence
6 EI
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To put this in the usual form, put a = x and b = — y,

when
Wx2

f
, .

This equation should be compared with the result

obtained on page 78.

Exercise 222. A weightless cantilever is loaded at three-

fourths of its length from the fixed end with W pounds.

Find the deflection at the free end.

Exercise 223. Check the result of Ex. 222 by means of

the formulas deduced on page 78.

Exercise 224. Find the maximum deflection of a uni-

formly loaded simple beam.

Exercise 225. Find the equation of the elastic curve for

the left-hand interval of a simple beam loaded at mid-span

with W pounds.

Exercise 226. A simple beam carries two loads of W
pounds, one each at a inches from each support. The span

is / inches. Find the deflection at mid-span.

Of course the general equation on page 189 may be

used for beams of variable section, provided 7 can be

expressed as a function of x.

Exercise 227. Find the greatest deflection of a cantilever

of circular section, which tapers uniformly from a diameter d

at the fixed end to - at the free end; the only load con-

sidered to be W pounds- at the free end.
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Section XXI

DEFLECTIONS DUE TO SHEAR

The formulas giving the deflections of beams under

various loadings are usually deduced from the equation

This equation is deduced under the

assumption that^the beams are under the action of pure

bending stresses only. Thus the deflections due to

shearing stresses are not taken into account. The prin-

ciple of work furnishes a simple means for the determi-

nation of these (up to this point disregarded) deflections.

Resilience Due to Shear. — In Fig. 99 is shown a

differential element subject to a shearing stress, q. The

force q dydz = qdA acting upon

one face of this element suffers

a displacement <j>dx, if <t>
repre-

sents the shearing strain due to

q. Thus the work done on, or

the resilience of, this element

due to shear is

\{qdA) (ct>dx),

provided we assume the loading and thus the shearing

stress to increase gradually from zero to their greatest

values.
2

As G = *-, the resilience also equals -~^dx dA, or, as
(j> 2 Lr

it is often stated, the resilience per unit volume is
2G

Exercise 228. What is the resilience per unit volume for

normal stress?
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Exercise 229. Compute the resilience per unit volume

for the element shown in Fig. 82.

Deflection Due to Shear. —• As a special case consider

the deflection at the free end of a cantilever (Fig. 100)

due to shear only, the cantilever to be loaded at its free

-h

Fig. 100

W

Is

end and to be regarded as weightless and of constant

rectangular section.

If Fig. 99 represents an element of this beam, the

internal work is readily seen to be

where the first integration must cover the section of the

beam normal to its axis, and the second integration must

be taken over the entire length of the beam.

WS
The external work is— > where 8 is the required deflec-

tion. Thus,

*-f*m <>

If we assume that the shearing force is uniformly

distributed over the cross section, q is constant and

equation (1) becomes

?-&/*/"•
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W
where as q = —-

, under our assumption

W8 W2

f
l

dx(A),
2 2GA 2J

, Wl
S =GA-

This answer is only a very crude approximation to the

true deflection due to shear, for on page 68 it was
shown that the unit shearing stress is never constant

over a beam section as above assumed.

For a rectangular section b X h

1 = ^0^- A y
2
)-

Using this value of q and placing dA = bdy, equation (i)

becomes

W5 W2b fx=l fV
2

dxl (k2 -4y2

)
2 dy.

x=0 J h2 128 PG„ ,, y=--
2

Wb
or S =

S =

64 PG
WbhH
120 PG'

JAM

and as / =—

>

S =

12

6 Wl 6WI
5 hbG 5 AG

which is 20% greater than the value first found.

In I-beams and built-up girders the whole shearing

force may be assumed uniformly distributed over the

sectional area of the web (see page 70) ; the flanges are
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then assumed to carry no shearing stress. Under these

conditions fairly correct results are obtained by means

of the simpler calculations, neglecting the variation of the

unit shearing stress.

Exercise 230. Compute the deflection due to shear at

mid-span of a centrally loaded simple beam of rectangular

section.

Exercise 231. Show that the total deflection at mid-span

WP ( /hV

)

for the beam described in Ex. 230 is —=tt-
3

< 1 + 3 (y J £

provided the material is such that -= = - •

If I

j ) is a small number, as is usually the case, how does

this total deflection compare with the deflection due to bend-

ing only?

General Formula for the Deflection Due to Shear. —
The method used above for finding the deflection due to

shear can only be used when the beam carries a single

concentrated load and the deflection sought occurs under

this load.

Assume now a general loading, Fig. 96, and let us find

the deflection under some load, say L. If 5 is the total

deflection due to shear under L, then the external work

due to L and stored as shear resilience within the beam

is \ L8.

It is now necessary to compute the resilience due to

the sinking of the load L only. Consider any element

of the beam, as in Fig. 99, then its resilience due to any

shearing stress q is

- (force) (displacement) = -(qdA) \^dx)-
2 2 \G /
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Let L
q be the shearing stress due to the load L,

x
q be the shearing stress due to the load Wi, etc.;

then the resilience per differential element, provided L is

the only load upon the beam, is

i(v^4
When the load Wi has been gradually but wholly

applied, the additional resilience per element due to the

additional sinking of the load L only, will be

where (p.dxjis the additional displacement of the shear-

ing force, L
q dA , this force being due to the load L only.

The resilience due to the load L displaced by 5 under

action of all loads upon the beam will then be

I
-(LqdA)\

Lq+X
m
q

I

y~— dxj per element.

In general the vertical component of the shearing

stress at any point within a beam may be expressed in

the form

^ = hT \
ydA (see page 66).

Substituting this value of q, the resilience per element

due to L becomes
m= n 2

rŝ 1 fydA
iG _ "L^" bl J y

L&

m= 1

dA dx.
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Now L
QX being the shearing force on any section due

to the load L only, we may put

L
QX = L4> (*),

CydA

~\2

IdA.

It may happen that no load L exists at the point at

which the deflection is desired. Under these conditions

placing L = o in the above equation simply removes the

term LQX .

m=n
Moreover, as L

QX + £. m
Qx always represents the total

771 = 1

shearing force at any section due to all existing loads, we

may replace it by the symbol Qx previously used.

The formula for the deflection can then be written

Here the expression within the parenthesis must first

be evaluated as on page 68, and expressed in terms of y.

Then, when dA is expressed in terms of y, the integration

indicated may be extended over the beam section. The

result of this integration is either a constant or it must

be expressed in terms of x when the beam section varies.

This allows the final integration to be extended over the

whole length of the beam.
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The
<t> (x) used in the above formula is defined by

LQX = Lcj> (x), or when L is unity

that is, <j> (x) is the shearing force at any section of the

beam due to a hypothetical load of one pound placed at

the point at which the deflection is to be computed.

In case the above formula is to be used when the vari-

ation of the shearing stress over the beam section is

so small as to be negligible (as in the case of I-beams,

etc.), rf / V dA may be put equal to q = *=, a constant,

provided the area subject to shear is constant, and then

where A is that portion of the beam section assumed to

carry the whole uniformly distributed shear.

As an application of the above formula, let us find the

deflection at mid-span of a simple uniformly loaded

beam, Fig. 101.

4-

wl
2

« X > <r X 4\Wl

(H)
(«)j

Fig. ioi

As the deflection at mid-span is required, the hypo-

thetical load of one pound must be there applied. This

load and its reactions are indicated by means of dotted



200 MECHANICS OF MATERIALS

lines; care must be taken to remember that these forces

are not actual loads upon the beam, and in no wise add to

the deflection about to be computed.

In the two intervals to be considered we have

„ wl „ (wl \
Qx = wx, Qx = - I wxj,

and <t> (x) = %, <j)(x) =- (§).

If the variation of the shearing stress over the beam
section is neglected and A is the constant sectional area

subject to shear, we have the required deflection

+ AG»
i

\dx

AgJ [a

wl2

I AG\8 ) SAG

hs~-6—-X

:

Fig. 102

If a more accurate solution is de-

sired, the shape of the section must be

considered and / y dA must first be

evaluated.

For a beam of constant rectangular

section b inches wide and h inches

deep, Fig. 102,

and

J ydA =j ybdy = -(k2 - 4 y
2
),
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&G Jj,64 P

A T ^and as / = — ,

This is the general form of the equation for a beam of

constant rectangular section.

Substituting the values of Qx and (x) above derived

from Fig. 101 and integrating between proper limits,

we obtain

3_wP
20 AG

Exercise 232. Show that the general equation for the

deflection due to shear in beams of constant circular section is

10 rfe»o
a J AG

x) ,

dx.
9

Exercise 233. What is the deflection due to shear at the

free end of a uniformly loaded cantilever beam, neglecting

the variation of shearing stress over the cross section?

Exercise 234. A uniformly loaded beam overhangs one

abutment by a inches. The distance between the abutments

is I inches. Find the deflection due to shear at the free end.
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235. A hollow cast-iron column (so short that buckling

need not be feared) must sustain a steady load of 50,000

pounds and is to rest upon a sandstone

base. Assuming the working stress of

sandstone as 60 pounds per square inch

and the bearing^ power of the dry clay

soil supporting the foundation as 3 tons

per square foot, find the sectional area

of the column, the bearing surface of the

column footing, and that of the sand-

stone base.

236. Find the dimensions x and y in-

dicated in Fig. 103. The material is

wood; the load is variable.

237. Fig. 104 shows the lower end of

a foundation bolt subject to a constant

tension. Write

whose solution

dimensions d,

in terms

Fig. 103

equations

yield the

x, y, and

tension T

Fig. 104

stress of p pounds per square inch

material are E and

the

will

m, n,

z, in terms of the

pounds, assuming the bolt and

cotter to be wrought iron and

anchored to a steel plate.

238. Deduce expressions for

the change in sectional area and

the change in volume produced

in a cylinder (radius, r; length, I)

by a longitudinal compressive

The constants of the

1

m
203
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239. A wrought-iron bar 18 feet long and 1.5 inches in

diameter is heated to 200° F. and its ends are then firmly

fixed. The coefficient of expansion is .0000068. What force

will this bar exert when it has cooled to ioo° F.?

240. The compression flange of a cast-iron beam is 4 inches

wide and 2 inches deep; the tension flange 12 inches wide and

3 inches deep; the web 10 inches by 2 inches, (a) Locate

the neutral axis of the section, (b) Find the second mo-

ment of area about the neutral axis, (c) What load per foot

, run can this beam carry on a
9"_

*, IO_f00 j. Span; the greatest tensile

*«
I stress not to exceed 2000 pounds

_j£j
per square inch ? (d) What is the

greatest compressive stress in the

beam under the loading computed

in (c) ?

241. The shearing force to be

resisted by the section shown in

Fig. 105 is 100,000 pounds. Com-

pute the unit shearing stress at (a)

J, I I

2. + inches, (b) 3. + inches, (c) 15

pIG IO _ inches from the top of the section.

What is the mean shear in the

web if the web is assumed to carry the whole shear ?

242. Compute the deflection at A and at B for the loading

shown in Fig. 106.

W
B JL

-_Z _--,!<

iA
1 — I-

Fig. 106

243. A shaft AB rests on two supports C and D, Fig. 107,

and is loaded at the ends as shown. How much higher is the



PROBLEMS FOR REVIEW 205

middle of the shaft than the ends ? Solve this problem by

means of formulas deduced on pages 80 to 84.

244. A short post 12 inches square carries 28,800 pounds.

The center of pressure is 3 inches from one edge and 6 inches

Fig. 107

W

from another edge of the top section. Find the greatest,

the least, and the mean unit stress.

245. A cantilever carrying a uniformly distributed load is

propped to the level of the fixed end at a point f of its length

from the fixed end. What frac-

tion of the whole load does this

prop carry ?

246. Sketch the shearing

force and bending moment dia-

grams for the propped beam

described in Ex. 245, and com-

pute the principal values of the

shearing forces and bending

moments.

247. The turbine shaft of a

5-horse-power De Laval steam

turbine makes 30,000 r.p.m.

What should be its diameter if

the working strength of steel in

shear is 3000 pounds per square inch ?

248. Fig. 108 represents a column and its foundation.

Find the dimension b and the relation which must exist

between W, H, I, and p', if pt is the greatest allowable pressure

on the soil in pounds per unit area. The pressure between

M
-b-

m//////m.......

,

Fig. 108

~m.
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the foundation and the soil may be assumed to vary accord-

ing to the straight-line law.

249. A column is built up of 4 Z-bars and 3 plates as shown

in Fig. 109. The area of the Z-bar section is 6.96 square

, inches, and its moments of inertia
r

about the indicated axes are I\ =

23.68 inches4 and 72 = n-37 inches4
.

The plates are 7§ inches by 1 inch

and 13 inches by 1 inch. Find the

least radius of gyration of this col-

umn section and the load it can

-. safely support on an unsupported

-) length of 20 feet, with a working

"~V c
*'

4
*! stress of 16,000 pounds per square

12 inch, the ends being fixed. Use Ran-

kine's formula.

250. A locomotive driving wheel

60 inches in diameter has a steel

tire, f inch thick, shrunk upon it.

-$-* *-Q- The diameter of the tire was orig-

FlG inally \$%% of the diameter of the

wheel. Find the hoop stress pro-

duced in the tire and the pressure in pounds per square inch

on the wheel.

251. A rod of iron 1 inch in diameter and 6 feet long is

found to stretch TV 0I an inch under a load of 7.5 tons.

The ultimate strength of this iron is 50,000 pounds per

square inch. Find its modulus of elasticity.

252. A beam 20 feet long bears a uniform load of 100

pounds per foot on the left half of its length. Find the

bending moments at 5, 10, and 15 feet from its left end.

What is the maximum bending moment and where does it

occur?

253. Find the necessary thickness of a copper steam pipe

4 inches in diameter for a steam pressure of 100 pounds per
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square inch. The safe stress for copper may be taken at

1000 pounds per square inch.

254. Find the greatest shearing stress in a circular shaft

1 inch in diameter when transmitting 1 horse power at 100

r.p.m.

255. What is the deflection at the middle of a 2 by 12 inch

pine joist of 1 2-foot span supported at the ends and uni-

formly loaded with 3200 pounds ?

256. A cylinder 9.5 inches inside diameter contains steam

at 180 pounds per square inch. The cylinder head is held

by 6 wrought-iron bolts placed at equal distances from each

other on the flange. Find the diameter and the depth of

the head of the bolts for a factor of safety of 10 against shear

and tension.

257. Sketch the shearing force and bending moment dia-

grams and compute the greatest bending moment and the

location of the dangerous section for a simple beam, span

20 feet, loaded with 100 pounds per foot for a length of

8 feet starting at one abutment.

258. A floor designed to support a total load of 200

pounds per square foot is to be supported by steel I-beams

having a span of 12 feet and spaced 5 feet center to center.

What should be the section modulus of these beams with a

factor of safety of 5 ?

259. A hollow steel shaft (length 5 feet, outside diameter

6 inches) is to transmit 300 horse power at 200 r.p.m. What
should be its internal diameter, allowing a factor of safety

of 6? Through what angle (expressed in degrees) will this

shaft be twisted while transmitting this power ?
•

260. Show that a prism under compression is also in shear.

261. A simple wooden beam 10 feet long and 6 inches

deep is to carry a load of 700 pounds at mid-span with a

factor of safety of 8. How wide must it be? If the weight

of the beam is 40 pounds per cubic foot and this weight is

included in the computation, what is its width?
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262. Find the dangerous section and the greatest bending

moment for the loading shown in Fig. no; sketch the shear-

ing force and bending moment diagrams.

263. A flanged cylinder 10 inches inside diameter and

10 feet long contains steam at 150 pounds per square inch.

The heads of the cylinder are held against the flanges by

a single wrought-iron bolt, 1 inch in diameter, passing

4000*

500 » per foot 1
K-B-'-»]«- -10- 3*^ 1'- *|

I -

1

I

Fig. iio

through the cylinder. Assuming the heads to be rigid, how

much must the bolt be stretched by screwing up the nuts

in order that the heads may be held steam-tight against the

flanges?

264. What horse power can be transmitted, with a factor

of safety of 6, by a wrought-iron shaft 4 inches in diameter

when making no r.p.m.?

265. Two 8-inch steel I-beams, 25.25 pounds per foot,

area of section 7.43 inches2, moments of inertia 68 inches4

and 4.71 inches4
, are joined by lattice work to form a column

20 feet long. How far apart must these beams be placed,

center to center, in order that the column may resist buckling

in one direction as well as in another?

266. The total load on the axle of a truck is 6 tons; the

wheels are 6 feet apart and the axle boxes 5 feet apart.

Draw the bending moment and shearing force diagrams

and compute the bending moment midway between the

wheels.

267. A cast-iron pipe 18 inches in diameter is to be used

to transmit water under a head of 300 feet. If the factor

of safety is to be 15 and the ultimate strength of cast-iron
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in tension is 20,000 pounds per square inch, what should be

the thickness of the metal?

268. What deflection at mid-span due to a uniformly

distributed load would produce a stress of 800 pounds per

square inch in the extreme fibers of a 2 by 10 inch simple

wooden beam of 20-foot span? (E = 1,700,000.)

269. Compute the distance of the dangerous section from

the left support of a simple beam, span I feet, uniformly

loaded for a distance of a feet starting at b feet from the left

support.

270. Compute, by means of the principle of work, the

deflection at mid-span of a uniformly loaded simple beam,

the deflection at mid-span of a centrally loaded simple beam.

From these results compute the reactions of the supports of

a beam continuous over two equal spans of / feet and uni-

formly loaded with w pounds per foot run.

271. Assuming that a chain is twice as strong as the round

bar of which the links are made and that the working strength

of the metal is 6000 pounds per square inch, what should be

the diameter of the metal in the chain used on a 20-ton crane

with three-sheaved blocks?

272. Compute the position of the

horizontal neutral axis, the second

moment of area about this axis, and

the section modulus of the section

illustrated in Fig. in.

273. What must be the section

modulus of a mild steel beam de- 1

18
» *

signed to carry concentrated loads of
Fig ixi

20 tons at s feet from the abutments

of a 30-foot span, the fiber stress not to exceed 16,250 pounds

per square inch?

274. The diameter of a solid steel shaft designed to trans-

mit 9000 horse power at 140 r.p.m. with a working stress of

10,000 pounds per square inch is 14.6 inches. The greatest
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twisting moment is assumed to be f of the mean. If this shaft

is replaced by a hollow one whose internal diameter is -fV of

the external and the shafts are 60 feet long, what weight is

saved? (Steel weighs 480 pounds per cubic foot.)

275. Find, by means of the principle of work, the deflec-

tion at the free end of a cantilever loaded at the free end,

the deflection of a cantilever uniformly loaded, and from these

results compute the pressure on a prop which sustains the

free end of a uniformly loaded cantilever at the level of the

fixed end.

276. Compute by means of Rankine's formula the load a

10-foot wrought-iron pipe 4 inches external and 3 inches

internal diameter can sustain when used as a column.



ANSWERS

1. ML-1 T~2
; M°L°T°; ML-1 T~2

.

2. 16,530,000 lbs. per sq. in.

3. 25,000 lbs.

4. 69 ft.

5. .2 in. .

7. .0965 in.; .00142 sq. in.; .158 cu. in.

8. 24,800 lbs.

9. 230.5 ft.

10. 2.16 in.

11. 5 in. by 5 in.; 12 in. by 12 in.; under variable loads.

12. 8 in.

13. 47,200 lbs.

14. .0026 in.

15. .25 in.

16. 14,980 lbs.

17. i54°F.

18. 58,500 lbs. per sq. in.

20. 109 ft.-lbs.

ai. 1.53 H.P.

it
E

26. 250 sq. in.; 270 sq. in.

27. Practically 800 lbs. per sq. in.

Wl± VWH2 +2AWhlE

24

28. p =
Al

34. i/(-) — Ji
2
» from the center.

wx2
, wl ,, wx3

, wlx ,_ wP
37. &=-x +-; ^=-77+ t ; ^m" =

i7
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39. 6200 lbs.-ft.; 2750 lbs.-ft.

41. At^; Mm^ = ^wl\

42. 18.33 ft; 5549 lbs.-ft.

43. 4000 lbs.-ft.; 192,000 lbs.-ft.; at right-hand abutment.

46. 8| in. (1 inch = 10,000,000 lbs.-in.)

47. 1.84 in., .84 in.

48. 1.49 in. from outer surface of the plate.

52. 638 in.4
, 53.4 in.

4

53. 4.95 in. from top; 373.5 in.
4

54- 7"i-

55. 780 lbs.

56. 5.7 in.

57. 825 lbs.

58. 1590 lbs.

59. 3.28; 1.92.

60. bW = 157 .". 2 in. X 10 in.

61. 3.38 in., say 4 in.

62. bh2 = 972 .'. either 3 in. X 18 in. or 4 in. X 16 in.

63- 3°-75 in -
3

64. 8820 in.
3

63. 6025 lbs.

68. 8 ft. from the ends.

70 - h = X
\/bPc' ^ b

J£
x2 y* _ /3WP

7l
' ^Y

+ 3wP
-1

' X 4bpc

'

{2/ 4 bpc

72. 7200 lbs. per sq. in.

73- 7°-3, 93-7, o, lbs. per sq. in.

75. 104, 156 lbs. per sq. in.

76. 8, 2.7.
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77. 2.5 in., 6.7.

78. 3 in., 1 1. 7.

79. 3.6, 12, 16.2, 48.6, 49.2, o, each multiplied by y
80. 2.92, .65.

82. V-h

84- y =- ^j(*3 -3*2*+ 2

*

3
).

83. .00604, -24 1 in-

86. .257 in.

w
87. y =—=r? (— x4 + 4 /

3» — 3 /
4
), origin at free end.

24 JOjI

w
y = —p-. (— xi + 4 /a;

3 — 6 /V), origin at fixed end.

wl3 w/4 fr-P

6 EI' &EI' $Ec'

88. y = -^|rr (-x3 + 2fe2 -/3
).J

24 £/

wP 5w/4
5 j>^

2

24 £/' 384 £/' 48 Ec
'

89. 6.94 ft., 3.9 = factor of safety.

90. 20.8 ft., 12,500 lbs.

W
91. y = -^-et?(/

3— gl2x-\-i2lx2—4x3
), for right-hand interval.

40 h,l

W
y = r (4 a;

3 — 3 P»), for left-hand interval.
40 £./

16 EI' 48 EI' 12 Ec

)\P-(l-ay\ JW
glEI V 3

W(l-a) \P-(l-a) 2
\ /I

2 -(I- a)2

92 - „;cv y
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3WI3 7WI3 5V5WP
93-

256 EI' 768 El' 768 EI

95

96

97

98,

99

ioo

101

102

IO4

105

Wl3

(3? -4«2
).

48 £/

24 £/

/_S_ ,

±\WP = Wl3

\384
+

128/ EI 48 El'

2.12 + 1.59 = 3.7 in.

16
'

\wl, -wl, \wl.
o 4 &

16 ' 8 ' 16
Ir -

35i

2048

!£)/ w/2 w/2 wP I I /1 , , il—
;— ; — ; =—=;-±-\/-, .211 / from the ends.

2 12 24 384 EI

P<P

2,2 Ec

^wl.

II /i

107. -rw£, -w/, — w/, -w/, -^w/.
20 7 14 7 28

108.
wl3

4 /1 (3; + 2 W
£2 cA2

113. -, -¥ >*

114.
1

1

chx

1 +-ZT

h
115. C =

g
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A R
117. 3230 and 1410 lbs. per sq. in.

118. 14,834 comp., 13,166 tension.

119. ¥ = s(t£ + hh-tf).
120. 2 in.

121. 11. 7 in.

123. 95,600 lbs.

126. 5.58 in.

127. 296, 14S.

128. k2 = 2.21, - = 145, 5430 lbs. per sq. in.

129. 1300 lbs., 9600 lbs.

130. |
= 57. 17-3 in -

131. By Euler's formula, 3.12 in.; -r = 77; by Rankine's

formula 3.5 in.

J 32. £ = 75; 227,000 lbs.

134-
d? + d2

*

dx Vdi2 -di
I3S- i-44-

136. 9800 lbs. per sq. in.; 13 46'.

I37<
df-df'

138. 1.67.

140. 2tV in-

142. 1.68 H.P.

143. 5.4 m.

144. 8.4.

145. 12,000,000 lbs. per sq. in.

146. 2.37 .

147. 4.1 in.; 12.5.

151. #» = - 279; g = - i6 -3; P'= - 29-s; i' = - 87-5-
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I 53- a = 3° 20', pi =+ .9; a = 93 20', p%= — 280.9

159. a = 48° 20', — 140.9; a = 138 20', + 140.9.

164- 4-35 S-6 -

165. p' = p;q' = o.

167. 3600 lbs. per sq. in.

168. 2; 1.3.

169. n = cot 2 a.

170. .36.

171. 147,000 lbs. per sq. in.

172. 65,300 lbs. per sq. in.

177. si = si ; S2' = 52 ; 53 =53mm mm mm
180. .304.

181. .2.

J^S. 8750 lbs. per sq. in.

186. pi + ?-(-p2 + p 3);p2+ ±-(-pi + p3);m m

- P3 ~ — (Pi + Ps)-m
191. 9780; 17,900; 22,300, — 4250; 26,500; 23,500, — 11,000.

193. 88.6 lbs. per sq. in.

194. .32 in.

195. -ft in.

196. 20,000 lbs. per sq. in.

(2 \ wr wr
1 )— , .2— •

198. 6530 lbs. per sq. in.

199. 405 lbs. per sq. in.

201. .339 in., or .423 in.

202. .119 in.

203. 20.

204. ph = c.

,,, ,
266000

205. ph = 666 H ^— ; 3330, 2240, 1590, 1330.

Wib
207. —

.
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208. O, — Wi.

211. .31 in.

212. 143 lbs. per sq. in.

2X3. Outside t.— £t* j^-^2 +(,H4
_92i»i

msiae p f
= —

»

215

216.

. .

,

2 w a-

w#6

240 EI

21.

M3

_i_ ( PR3 sPW m^
(

7# £/
J 96

+
384

+
240

J

219.
48 EI
Wa\l - a)2

221. L\(i—n)x\;^L\n{l — x)\.

27 JW
222. —

128 EI

5 wll

w
225. y = ^g^ (4 x

3 - 3 ftc).

^a(3^-4a2
)

.

24 £/
128 TW

227
' J^E

228. 4-
2.E

3 Wl
230. — ^vT"10GA
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wP
233.

234-

2GA
Wa> (a + 1)

2IGA

235. 4.2 sq. in.; 834 sq. in.; 1200 sq. in.

236. 5 in.; 2 in.

237. T = 13,500 ttcP = 13,500 (w2 — mn) = 10,000 (2 qn).

= 10,000 (2 zm) = 10,000 («») = 10,000 (2 *«).

_ 2 prfi p(m — 2) tit
2
/

23
~mE~' mE

'

239- 33,6o°-

240. 5.09 in. from bottom; 1465.9 in. 4
;
3840 lbs. per foot

run; 3890 lbs. per sq. in.

241. 916, 3160, 3940, 4170 lbs. per sq. in.

WP WP
242

' 6EI' 4^E7"

11 wP
243

- 6 EI'

244. 500, — 100, 200 lbs. per sq. in.

*45. .if-
3 2

247. .262 in.

248. b =
6
-^,W = 18 pJPP.

249- 3-5 1 in -> 847,000 lbs.

250. 20,000, 500 lbs. per sq. in.

251. 22,300,000 lbs. per sq. in.

252. 2500, 2500, 1250, lbs.-ft.; 7.5 ft., 2812.5 lbs. per sq. in.

253. .2 in.

254. 3200 lbs. per sq. in.

255. .27 in.

256. d = .71 in.; h = .24 in.

257. 13.6 ft.; 2050 lbs.-ft.

258. 16.61 in.3
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Angle of shear, 124, 126, 157.

twist, 123, 127.

Answers to exercises, 211.

Area, change in, 0.

Assumptions in the theory of, bending, 46, 164.

thick hollow cylinders, 177.

b, see Built-in, Cantilever, Continuous, Simple,

bending moments in, 23.

Bernoulli's assumption 46.

curvature of, 46, 75.

dangerous sections, 39, 42, 6g.

definitions, 21.

deflections due to bending, 75, 181.

deflections due to shear, 193.

design and investigation, 56.

elastic curvature, 75.

equally strong in shear and bending, 73.

resilience of, 181, 193.

shearing stresses in, 63.

straight-line law, 47.

uniform strength, 61.

work of deformation, 181, 193.

Bending and torsion, combined, 166.

Bending moment, definition of, 24.

Bending moments, diagrams of, 26.

from funicular polygon, 44.

from shearing force diagram, 37.

maximum, 40, 42.

relation between shearing forces and, 31.

signs of, 24, 26.

Bernoulli's assumptions, 46.

Buckling, in.

221
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Built-in beams, 21, 95.

Bulk modulus, 159.

Cantilever beams, bending moments, 29.

definition, 21..

deflection, 76, 79.

shearing forces, 29.

slope, 76, 79.

uniform strength, 61.

Cantilever bridge, 106.

Changes in section and volume, 8.

Circular sections, shear on, 71.

Circular shafts in torsion, 123.

Clapeyron's theorem of three moments, 97.

Clavarino's formula, 180.

Coefficient, see Modulus.

Columns, critical load on, 112.

eccentric load on, 107.

end conditions, 112.

Euler's formulas, 116.

long, in.

Rankine's formula, 118.

short, 11, 107.

slenderness ratio, 117.

straight-line formula, 121.

Combined torsion and bending, 166.

Common theory of bending, 45.

Compound stresses, 166.

Compression, 4.

Compressive strength, 9.

Concentrated load, 22.

Concrete, reinforcements in, 144.

Constant strength, beams of, 61.

rod of, 17.

Continuous beams, 97.

advantages and disadvantages, 105.

bending moments, 102, 104.

definition, 21.

reaction, 101, 102.

shearing forces, 101, 104.

theorem of three moments, 97.
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Contraction of section and volume, 8.

Cranked shaft, 168.

Critical load on columns, 112.

Curvature of beams, 46, 75.

Cylinders, Lamp's formulas, 179.

thick hollow, 176.

thin hollow, 170, 175.

Cylindrical shells, 170.

hoop tension in, 171.

longitudinal tension in, 172.

#nder external pressure, 175.

under internal pressure, 1 70.

Dam, masonry, no.

Dangerous section, for bending, 39, 42.

for shear, 69.

Deflection of beams, 75.

by principle of work, 181, 184, 186, 103.

due to shear, 193.

for a given fiber stress, 78.

Design of beams, 56.

Diagrams of shearing force and bending moments, 26.

Differential equations of the elastic curve, 76, 86.

Distributed load, definition, 22.

Eccentric loads on columns, 107.

Elastic constants, 9, 158.

relation between, 159.

Elastic curve, definition, 23.

differential equation of, 75.

Elastic failure, 161.

three theories of, 162.

in beams, 164.

in cranked shafts, 168.

in envelopes, 170.

Elastic limit, 6, 9.

Ellipse of stress, 152.

Envelopes, 170.

Clavarino's formula, 180.

cylindrical shells, 170, 175.

Lamp's equations, 179.
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Envelopes, spherical shells, 174.

thick hollow cylinders, 176.

Equality of shearing stresses, 134.

Equivalent simple stress, 164.

Euler's column formulas, 116.

Experiments, 2, 5, 8, 155.

External, forces, 24.

work, 181, 185.

Factors of safety, 9, 10, 162.

Fixed beams, 21, 95.

Flexure, see Bending.

Funicular polygon, 44.

General problem of stress, 136.

Gyration, radius of, 108.

Hollow cylinders, see Cylinders.

shafts, 126, 127.

spheres, see Spheres.

Hooke's law, 7, 14, 46.

Hoop tension, 171.

Horizontal shearing stresses, 63.

Hydrostatic stress, 157, 159.

Impact of falling weight, 18.

Inertia, moments of, 52.

Inflection, points of, 94.

Internal, forces, 24.

resistance to sliding, 150.

work, 181, 185.

Investigation of beams, 50.

I-section, distribution of stresses, 71.

variation of shear, 69.

Lame's equations, 179.

Lateral deformation, 8, 155.

Linear stress, 149.

Loads, denned, 22.

Long columns, in.

Longitudinal tension in shells, 172.

Luders' lines, 150.
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Machine, j..

Masonry dam, no.

Materials, physical properties of, 9.

Maximum, bending moment, 40, 42.

normal stress, 140, 141.

shearing stress, 144, 145.

Mechanics of materials, 2.

Middle third, 109.

Modulus of, bulk, 159.

elasticity, 7, 9, 158.

rigidity, 9, 126, 159.

rupture, 63.

shear, 9, 126, 159.

Moment, diagrams, 26.

of resistance, 23.

Moments of inertia, 52.

polar, 125.

theorems on, 53.

Neutral axis, defined, 23.

location of, 50.

of stress, 109.

Neutral, line, 23.

surface, 23.

Normal stress, 3, 131.

maximum, 140, 141.

strains due to, 155.

Physical constants, 9.

Pipes, 170, 175.

Points of inflection, 94.

Poisson's Ratio, 8, 9, 156, 159, 164.

Polar moment of inertia, 125.

Power transmitted by shafts, 129.

Principal, planes, 140.

stresses, 141.

Principle of, superposition, 43, 83.

work, 181.

Problems for review, 203.

Propped beams. 85, gi.

Pure, normal stress, 140, 141.

shear, 145, 147.
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Radius of gyration, 108.

Rankine's column formula, 118.

constants for, 119.

Rectangular section, variation of shear on, 68.

Reenforcement in concrete, 144.

Relation between, elastic constants, 159.

rate of loading and shearing force, 33.

shearing force and bending moment, 31

.

stress and strain, 4, 158.

stress components, 136, 139.

Resilience, 15.

of a beam due to bending, 181.

of a beam due to shear, 193.

Resistance to shear, 25.

Resisting, moment, 23, 49.

torque, 124.

Review, problems for, 203.

Rod of constant strength, 17.

Rupture, modulus of, 63.

Safety, factors of, 9, 10, 162.

Second moment of areas, 52.

Section modulus, 59.

Shaft, coupling, 1 28.

cranked, 168.

Shafts, powers transmitted by, I2g.

stiffness of, 127.

strength of, 125.

torsion and bending in, 166.

Shear, definition, 12.

Shearing force, definition, 25.

diagrams of, 26.

relation between bending moments and, 31.

signs of, 25, 26.

Shearing, modulus of elasticity, 126, 159.

strength, 9.

Shearing stress, definition, 13.

maximum, 144.

pure, 145, 147.

Shearing stresses, equality of, 134.

in beams, 63, 73.

strains due to, 157.
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Shells, see Envelopes.

Signs of, bending moments, 24, 26.

shearing forces, 25, 26.

stresses, 137.

Simple beams, definition, 21.

deflections of, 79, 80, 83, 87.

loaded over part of span only, 40.

shearing forces and bending moments of, 27, 28, 30, 37,

40, 87.

slopes of, 79, 80, 83, 87.

uniform strength of, 63.

Simple bending, 45.

Slenderness ratio, 117.

Slope of beams, 75.

Spherical shells, 174.

Statically indeterminate beams, 91.

Steel beams, 59.

Stiffness of beams, 75.

Straight-line, column formulas, 121.

law, 47, 125.

Strain, 4, 154.

actual, 156, 168.

due to normal stresses, 155.

due to shearing stresses, 157.

lateral, 8, 155.

longitudinal, 4, 8, 155.

relation between stress and, 158.

volumetric, 157.

Strength, ultimate, 7, 9, 10.

Stress and Strain, 4, 158.

Stress, 4, 131.

ellipse of, 152.

equivalent simple, 164.

hydrostatic, 157, 159-

linear, 149.

maximum normal, 140, 141.

maximum shearing, 144, 145.

neutral axis of, 109.

normal, 3, 131.

oblique, 132.

relation between strain and, 158.
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Stress, tangential or shearing, 13, 131.

working, 10.

Stresses, notation for, 132.

principal, 141.

relation between component, 136, 139.

signs of, 137.

temperature, 14.

theorems concerning, 134, 140, 141, 145, 147.

Structure, 1.

Struts, see Columns.

Superposition, principle of, 43, 83.

Surfaces of principal stress, 142.

Temperature stresses, 14.

Tensile strength, 9.

Tension, 4.

Testing machines, 4.

Theorem of three moments, 97.

Theorems, concerning stresses, 134, 140, 141, 145, 147.

on moments of inertia, 53.

Theory of simple bending, 45.

Thick hollow cylinders, 176.

Thin hollow, cylinders, 170, 175.

spheres, 174.

Torsion, 123.

angle of, 123.

circular shafts in, 125, 127.

Torsion and bending combined, 166.

Ultimate strength, 7, 9, 10.

Unit, strain, 4.

stress, 4.

Variation in shearing stress, 68.

Vertical shearing stress, 67.

Volume, change in, 8, 159.

Volumetric strain, 157.

Wooden beams, 58.

Work, external, 181, 185.



INDEX

Work, internal, 181, 185.

principle of, 181.

Working stress, 10.

Yield point, 6.

Young's modulus, 7, 158.
















